

KENTUCKY TRANSPORTATION CENTER

SEISMIC EVALUATION AND RANKINGS OF EMBANKMENTS FOR BRIDGES ON AND OVER THE PARKWAYS IN WESTERN KENTUCKY

OUR MISSION

We provide services to the transportation community

through research, technology transfer and education. We create and participate in partnerships to promote safe and effective transportation systems.

OUR VALUES

Teamwork

Listening and communicating along with courtesy and respect for others.

Honesty and Ethical Behavior

Delivering the highest quality products and services.

Continuous Improvement In all that we do. Research Report KTC-07-06/SPR246-02-5F

SEISMIC EVALUATION AND RANKING OF EMBANKMENTS FOR BRIDGES ON AND OVER THE PARKWAYS IN WESTERN KENTUCKY

by

Han Shan Ding

Visiting Professor, Department of Civil Engineering University of Kentucky

Issam E. Harik

Professor and Chair of Civil Engineering, and Head of Structures Section, Kentucky Transportation Center

and

Ching Chiaw Choo Post-doctoral Research Fellow, Kentucky Transportation Center Department of Civil Engineering University of Kentucky

> Kentucky Transportation Center College of Engineering, University of Kentucky

> > in cooperation with Transportation Cabinet Commonwealth of Kentucky

> > > and

Federal Highway Administration U.S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification or regulation. The inclusion of manufacturer names or trade names is for identification purposes and is not to be considered an endorsement.

June 2008

		ocumentation Page			
1. Report No. KTC-07-06/KYSPR246-02-5F	2. Government Acces	ssion No.	3. Recipient's Catalo	g No.	
4. Title and Subtitle			5. Report Date		
				2008	
SEISMIC EVALUATIO					
EMBANKMENTS FOR BRI			6. Performing Organ	ization Code	
			00		
PARKWAYS IN WE	SIERNKENIU	JKY			
7. Author(s): H.S. Ding, I.E. Harik, and	C.C. Choo		8. Performing Organ	ization Report No.	
	0.0. 0100				
			KTC-07-06/S	PR246-02-5F	
9. Performing Organization Name and Addr	ess		10. Work Unit No. (Th	RAIS)	
				,	
Kentucky Transporta					
College of Engineerin			11. Contract or Gran	t No.	
University of Kentuck			KYSP	PR 246	
Lexington, Kentucky	40506-0281				
			13. Type of Report a	nd Period Covered	
42. Changering Anguary Name and Address					
12. Sponsoring Agency Name and Address			Fi	nal	
Kentucky Transporta	tion Cabinet				
State Office Building			14. Sponsoring Ager	nev Codo	
Frankfort, Kentucky	40622		14. Sponsoring Ager	icy code	
15. Supplementary Notes Prepared in cooperation with Transportation, Federal High			ind the U.S. Depart	ment of	
16. Abstract					
This study represents one of th <i>Kentucky</i> investigative series. The e slope instability and liquefaction po	ffort is focused on totential. An evalu	the seismic vulnera	bility of bridge emb procedure is prese	ented to assist in	
identifying and prioritizing bridge emb	ankments that are	susceptible to failure	e due to projected s	seismic events.	
To expedite the process, the programmed. Three hundred and eig western Kentucky parkways – Audu evaluated for projected 50-year and 2	ght-nine (389) bridge bon, Pennyrile, Pur	e embankments (pa chase, Western Ke	arallel bridges inclue entucky, and Willia	ded) along the five	
30% of the bridge embankments are rated as ' <i>critical</i> ' for projected 50-year event earthquakes, and 36% for projected 250-year event earthquakes. Based on this preliminary investigation, it is recommended that a more detailed analysis be carried out for bridge embankments rated as ' <i>critical</i> '.					
17. Key Words		18. Distribution State	ment		
Embankment; Seismic Evaluation; Pa Western Kentucky		limited with approva ky Transportation (
19. Security Classif. (of this report)	20. Security Classif.	of this page)	21. No. of Pages	22. Price	
Unclassified	Unclas		114		

Form DOT 1700.7(8-72) Reproduction of Completed Page Authorized

EXECUTIVE SUMMARY

BACKGROUND AND OBJECTIVE

The majority of the three-hundred and eighty-nine (389) bridges, with few exceptions, along the western Kentucky Parkways – Audubon, Pennyrile, Purchase, Western Kentucky, and William Natcher Parkway – were designed and constructed during a period where a less stringent seismic design specification was required, as compared to today's standard (i.e. newer seismic design guidelines, updated time-history data, better understanding on soil-structure interaction, etc). Therefore, it is the aim of this preliminary study to investigate the vulnerability of bridge embankments against slope stability failure and liquefaction potential.

TASKS

To accomplish this objective, several tasks are identified: (1) compiling an inventory of bridges along the five parkways, (2) conducting field inspection of bridges, and subsequently (3) performing analytical investigation of bridge embankments to assess their vulnerability against slope stability and liquefaction potential failures.

Tasks (1) and (2) had been carried out and completed in July 2002. A resulting bridge inventory was compiled and details can be found in a separate report (Report number: KTC-07-03/SPR 246-02-2F). Investigation and results of Task (3) are presented in this report.

BRIDGE EMBANKMENT RANKING

In Task (3), methodologies to evaluate the slope stability (Chapter 2) and liquefaction potential (Chapter 3) are derived. Subsequently, a rating system which is a combination of both methodologies is developed to identify and prioritize bridge embankments in accordance with their seismic vulnerability. To expedite the evaluation and rating process, the algorithm titled *Seismic Assessment System for Bridges* (SASB) is programmed.

Based on this preliminary investigation, 30% of bridge embankments are rated as 'critical' – embankments that are identified as having unstable slope and risk of liquefaction – for projected 50-year event earthquakes, and 36% for projected 250-year event earthquakes. The 'critical' bridge embankments along the five parkways in the respective county are listed in Tables E.1 (50-year) and E.2 (250-year), respectively. For these bridge embankments, it is recommended that a more detailed and sophisticated analysis be carried out.

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
Butler	16- 9007-B00061	0.09g	0.14	Low	A1
Caldwell	17-9001-B00033 & 17-9001-B00033 P	0.09g	0.62	Low	A1
Christian	24-9004-B00099	0.09g	0.77	Low	A1
	30 9005 B00059 & 30 9005 B00059 P	0.15g	0.18	High	A1
	30-9005-B00058 & 30-9005-B00058 P	0.15g	0.12	Moderate	A2
	30-9007-B00082 & 30-9007-B00082 P	0.15g	0.41	Moderate	A3
	30-9005-B00060	0.15g	0.24	Low	A4
Daviess	30-9007-B00081 & 30-9007-B00081 P	0.15g	0.29	Low	A5
Daviess	30-9007-B00089 & 30-9007-B00089 P	0.15g	0.30	Low	A6
	30-9005-B00063	0.15g	0.31	Low	A7
	30-9007-B00085 & 30-9007-B00085 P	0.15g	0.32	Low	A8
	30-9005-B00061	0.15g	0.34	Low	A9
	30-9007-B00083	0.15g	0.49	Low	A10
	38-9003-B00055 & 38-9003-B00055 P	0.30g	0.17	High	A1
	38-0307-B00015	0.30g	0.18	High	A2
Fulton	38-9003-B00053 & 38-9003-B00053 P	0.30g	0.21	High	A3
	38-0051-B00012 & 38-0051-B00012 P	0.30g	0.24	Moderate	A4
	38-9003-B00054 & 38-9003-B00054 P	0.30g	0.29	Moderate	A5
	42-9003-B00170 & 42-9003-B00170 P	0.15g	0.39	Moderate	A1
Crea inter	42-0058-B00096	0.15g	0.10	Low	A2
Graves	42-9003-B00154 & 42-9003-B00154 P	0.15g	0.10	Low	A3
	42-9003-B00175	0.15g	0.16	Low	A4

Table E.1: Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 50-Year Event Earthquake.

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
	42 9003 B00162 & 42 9003 B00162 P	0.15	0.19	Low	A5
	42 9003 B00177 & 42 9003 B00177 P	0.15	0.2	Low	A6
	42 9003 B00176 & 42 9003 B00176 P	0.15	0.22	Low	A7
	42 9003 B00155 & 42 9003 B00155 P	0.15	0.24	Low	A8
	42 9003 B00169	0.15	0.26	Low	A9
	42 9003 B00172	0.15	0.26	Low	A10
	42 9003 B00160	0.15	0.3	Low	A11
Graves	42 9003 B00156 & 42 9003 B00156 P	0.15	0.31	Low	A12
	42 9003 B00165 & 42 9003 B00165 P	0.15	0.35	Low	A13
	42 0944 B00180	0.15	0.4	Low	A14
	42 1748 B00128	0.15	0.42	Low	A15
	42 9003 B00167 & 42 9003 B00167 P	0.15	0.43	Low	A16
	42 0121 B00111	0.15	0.52	Low	A17
	42 0301 B00028	0.15	0.52	Low	A18
	42 9003 B00161	0.15	0.55	Low	A19
Grayson		Ν	No bridges listed as 'cr	itical'	
Hardin	47 31W B00108	0.09	0.72	Low	A1
	51 9005 B00072	0.15	0.14	Low	A1
	51 9004 B00069	0.15	0.39	Low	A2
Henderson	51 9004 B00062 & 51 9004 B00062 P	0.15	0.51	Low	A3
	51 9004 B00111	0.15	0.6	Low	A4
	51 9004 B00065	0.15	0.61	Low	A5

Table E.1 (Cont'): Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 50-Year Event Earthquake.

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

Table E.1 (Cont'): Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 50-Year Event Earthquake.

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
Hickman	53 0094 B00050	0.3	0.24	High	A1
THERMAN	53 9003 B00068	0.3	0.3	Low	A2
	54 9004 B00015	0.09	0.35	Low	A1
	54 9001 B00137 & 54 9001 B00137 P	0.09	0.45	Low	A2
	54 9001 B00143 & 54 9001 B00143 P	0.09	0.47	Low	A3
	54 9001 B00144 & 54 9001 B00144 P	0.09	0.47	Low	A4
TT 1.	54 9001 B00136 & 54 9001 B00136 P	0.09	0.54	Low	A5
Hopkins	54 9004 B00095 & 54 9004 B00095 P	0.09	0.56	Low	A6
	54 9001 B00145 & 54 9001 B00145 P	0.09	0.57	Low	A7
	54 9004 B00014 & 54 9004 B00014 P	0.09	0.7	Low	A8
	54 9001 B00140 & 54 9001 B00140 P	0.09	0.77	Low	A9
	54 9001 B00146 & 54 9001 B00146 P	0.09	0.81	Low	A10
Lyon		Ň	lo bridges listed as 'cr	itical'	
	79 0795 B00012	0.15	0.17	Low	A1
	79 9003 B00064 & 79 9003 B00064 P	0.15	0.23	Low	A2
	79 9003 B00074 & 79 9003 B00074 P	0.15	0.3	Low	A3
	79 0408 B00103	0.15	0.31	Low	A4
Marshall	79 1422 B00050	0.15	0.33	Low	A5
	79 9003 B00066	0.15	0.37	Low	A6
	79 9003 B00076 & 79 9003 B00076 P	0.15	0.44	Low	A7
	79 0348 B00102	0.15	0.51	Low	A8
	79 9003 B00068	0.15	0.66	Low	A9

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

Table E.1 (Cont'): Ranking of Critical Bridge Embankments along Wes	tern Kentucky
Parkways for a 50-Year Event Earthquake.	

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
	89 9001 B00096 & 89 9001 B00096 P	0.09	0.34	Low	A1
Muhlenberg	89 9001 B00094 & 89 9001 B00094 P	0.09	0.37	Low	A2
Mumenberg	89 9001 B00093 & 89 9001 B00093 P	0.09	0.41	Low	A3
	89 9001 B00109 & 89 9001 B00109 P	0.09	0.42	Low	A4
	92 9007 B00063 & 92 9007 B00063 P	0.09	0.28	Low	A1
Ohio	92 9007 B00075 & 92 9007 B00075 P	0.09	0.32	Low	A2
Oliio	92 9001 B00134 & 92 9001 B00134 P	0.09	0.42	Low	A3
	92 9001 B00133 & 92 9001 B00133 P	0.09	0.62	Low	A4
Warren	No bridges listed as 'critical'				
Webster	117 9004 B00074 & 117 9004 B00074 P	0.09	0.79	Low	A1

As defined in the Kentucky Transportation Cabinet (KyTC) Bridge Inventory The letter 'P' stands for parallel bridges PGA is the peak ground acceleration defined in Street et. al. (1996) Slope stability C/D ratio computation is presented in Chapter 2 Liquefaction potential determination is presented in Chapter 3 Only bridges with rank classification of A (Critical) are listed herein. A bridge with a ranking of A1 is more susceptible to damage than a bridge with a ranking of A2 in that particular county

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
Butler	16 9007 B00061	0.09	0.14	Low	A1
Caldwell	17 9001 B00033 & 17 9001 B00033 P	0.09	0.62	Low	A1
Christian	24 9004 B00099	0.09	0.77	Low	A1
	30 9005 B00058 & 30 9005 B00058 P	0.15	0.12	High	A1
	30 9005 B00059 & 30 9005 B00059 P	0.15	0.18	High	A2
	30 9005 B00060	0.15	0.24	Moderate	A3
	30 9007 B00081 & 30 9007 B00081 P	0.15	0.29	Moderate	A4
	30 9007 B00082 & 30 9007 B00082 P	0.15	0.41	Moderate	A5
	30 9007 B00089 & 30 9007 B00089 P	0.15	0.3	Low	A6
Daviess	30 9005 B00063	0.15	0.31	Low	A7
	30 9007 B00085 & 30 9007 B00085 P	0.15	0.32	Low	A8
	30 9005 B00061	0.15	0.34	Low	A9
	30 9007 B00083	0.15	0.49	Low	A10
	30 9007 B00094 & 30 9007 B00094 P	0.15	0.58	Low	A11
	30 9007 B00088 & 30 9007 B00088 P	0.15	0.69	Low	A12
	30 9007 B00092	0.15	0.87	Low	A13
	38 9003 B00055 & 38 9003 B00055 P	0.4	0.17	High	A1
	38 0307 B00015	0.4	0.18	High	A2
Fulton	38 9003 B00053 & 38 9003 B00053 P	0.4	0.21	High	A3
	38 0051 B00012	0.4	0.24	High	A4
	38 9003 B00054 & 38 9003 B00054 P	0.4	0.29	High	A5
Graves	42 9003 B00177 & 42 9003 B00177 P	0.19	0.2	High	A1

Table E.2: Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 250-Year Event Earthquake.

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

Table E.2 (Cont'): Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 250-Year Event Earthquake.

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
	42 9003 B00176 & 42 9003 B00176 P	0.19	0.22	High	A2
	42 9003 B00170 & 42 9003 B00170 P	0.19	0.39	Moderate	A3
	42 1748 B00128	0.19	0.42	Moderate	A4
	42 0058 B00096	0.19	0.1	Low	A5
	42 9003 B00154 & 42 9003 B00154 P	0.19	0.1	Low	A6
	42 9003 B00175	0.19	0.16	Low	A7
	42 9003 B00162 & 42 9003 B00162 P	0.19	0.19	Low	A8
	42 9003 B00155 & 42 9003 B00155 P	0.19	0.24	Low	A9
	42 9003 B00169	0.19	0.26	Low	A10
	42 9003 B00172	0.19	0.26	Low	A11
Cara	42 9003 B00160	0.19	0.3	Low	A12
Graves	42 9003 B00156 & 42 9003 B00156 P	0.19	0.31	Low	A13
	42 9003 B00165 & 42 9003 B00165 P	0.19	0.35	Low	A14
	42 0944 B00180	0.19	0.4	Low	A15
	42 9003 B00167 & 42 9003 B00167 P	0.19	0.43	Low	A16
	42 0121 B00111	0.19	0.52	Low	A17
	42 0301 B00028	0.19	0.52	Low	A18
	42 9003 B00161	0.19	0.55	Low	A19
	42 9003 B00166 & 42 9003 B00166 P	0.19	0.58	Low	A20
	42 0339 B00143	0.19	0.72	Low	A21
	42 9003 B00159 & 42 9003 B00159 P	0.19	0.82	Low	A22
	42 9003 B00157 & 42 9003 B00157 P	0.19	0.84	Low	A23

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
Grayson		Ν	Io bridges listed as 'cr	itical'	
Hardin	47 31W B00108	0.09	0.72	Low	A1
	51 0425 B00137 & 51 0425 B00137 P	0.15	18	Low	A1
	51 9005 B00072	0.15	54.1	Low	A2
	51 9004 B00069	0.15	28.6	Low	A3
	51 9004 B00062 & 51 9004 B00062 P	0.15	26	Low	A4
II.a. daman	51 9004 B00111	0.15	27.3	Low	A5
Henderson	51 9004 B00065	0.15	18	Low	A6
	51 9004 B00064	0.15	15	Low	A7
	51 9004 B00073 & 51 9004 B00073 P	0.15	27	Low	A8
	51 9005 B00074	0.15	26.1	Low	A9
	51 9005 B00075	0.15	20.89	Low	A10
	53 0094 B00050	0.4	0.24	High	A1
Hickman	53 9003 B00068	0.4	0.3	Moderate	A2
	53 1529 B00056	0.4	0.52	Moderate	A3
	54 9004 B00015	0.09	0.35	Low	A1
	54 9001 B00137 & 54 9001 B00137 P	0.09	0.45	Low	A2
	54 9001 B00143 & 54 9001 B00143 P	0.09	0.47	Low	A3
Hopkins	54 9001 B00144 & 54 9001 B00144 P	0.09	0.47	Low	A4
	54 9001 B00136 & 54 9001 B00136 P	0.09	0.54	Low	A5
	54 9004 B00095 & 54 9004 B00095 P	0.09	0.56	Low	A6
	54 9001 B00145 & 54 9001 B00145 P	0.09	0.57	Low	A7

Table E.2 (Cont'): Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 250-Year Event Earthquake.

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

Table E.2 (Cont'): Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 250-Year Event Earthquake.

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
	54 9004 B00014 & 54 9004 B00014 P	0.09	0.7	Low	A8
Hopkins	54 9001 B00140 & 54 9001 B00140 P	0.09	0.77	Low	A9
	54 9001 B00146 & 54 9001 B00146 P	0.09	0.81	Low	A10
Lyon		N	lo bridges listed as 'cr	ritical'	
	79 9003 B00076 & 79 9003 B00076 P	0.15	0.44	Moderate	A1
	79 0795 B00012	0.15	0.17	Low	A2
	79 9003 B00064 & 79 9003 B00064 P	0.15	0.23	Low	A3
	79 9003 B00074 & 79 9003 B00074 P	0.15	0.3	Low	A4
	79 0408 B00103	0.15	0.31	Low	A5
Marshall	79 1422 B00050	0.15	0.33	Low	A6
	79 9003 B00066	0.15	0.37	Low	A7
	79 0348 B00102	0.15	0.51	Low	A8
	79 9003 B00068	0.15	0.66	Low	A9
	79 9003 B00073	0.15	0.69	Low	A10
	79 641 B00126	0.15	0.77	Low	A11
	89 9001 B00096 & 89 9001 B00096 P	0.09	0.34	Low	A1
Muhlanhara	89 9001 B00094 & 89 9001 B00094 P	0.09	0.37	Low	A2
Muhlenberg	89 9001 B00093 & 89 9001 B00093 P	0.09	0.41	Low	A3
	89 9001 B00109 & 89 9001 B00109 P	0.09	0.42	Low	A4
	92 9007 B00063 & 92 9007 B00063 P	0.09	0.28	Low	A1
Ohio	92 9007 B00075 & 92 9007 B00075 P	0.09	0.32	Low	A2
	92 9001 B00134 & 92 9001 B00134 P	0.09	0.42	Low	A3

⁴ Slope stability C/D ratio computation is presented in Chapter 2

⁵ Liquefaction potential determination is presented in Chapter 3

Table E.2 (Cont'): Ranking of Critical Bridge Embankments along Western Kentucky Parkways for a 250-Year Event Earthquake.

County	BIN ^{1,2}	PGA ³	Slope Stability C/D ratio ⁴	Liquefaction Potential ⁵	Embankment Ranking ⁶
Ohio	92 9001 B00133 & 92 9001 B00133 P	0.09	0.62	Low	A4
Warren	114 0884 B00050	0.09	0.83	Low	A1
Webster	117 9004 B00074 & 117 9004 B00074 P	0.09	0.79	Low	A1

1 As defined in the Kentucky Transportation Cabinet (KyTC) Bridge Inventory

...

² The letter 'P' stands for parallel bridges
 ³ PGA is the peak ground acceleration defined in Street et. al. (1996)

⁴ Slope stability C/D ratio computation is presented in Chapter 2

5 Liquefaction potential determination is presented in Chapter 3

⁶ Only bridges with rank classification of A (Critical) are listed herein. A bridge with a ranking of A1 is more susceptible to damage than a bridge with a ranking of A2 in that particular county

NOTE: This report is the fifth (5 th) in a series of six (6) reports for SPR 206: "Seismic Evaluation of Bridges on/over Parkways in Western Kentucky". The six (6) reports are:			
Report Number:	Report Title:		
(1) KTC-07-02/SPR246-02-1F	Seismic Evaluation of Bridges on and over the Parkways in Western Kentucky – Summary Report		
(2) KTC-07-03/SPR246-02-2F	Site Investigation of Bridges on and over the Parkways in Western Kentucky		
(3) KTC-07-04/SPR246-02-3F	Preliminary Seismic Evaluation and Ranking of Bridges on and over the Parkways in Western Kentucky		
(4) KTC-07-05/SPR246-02-4F	Detailed Seismic Evaluation of Bridges on and over the Parkways in Western Kentucky		
(5) KTC-07-06/SPR246-02-5F*	Seismic Evaluation and Ranking of Embankments for Bridges on and over the Parkways in Western Kentucky		
(6) KTC-07-07/SPR246-02-6F	Seismic-Hazard Maps and Time Histories for the Commonwealth of Kentucky		

Denotes current report

ACKNOWLEDGEMENTS

The financial support of this project is provided by the Kentucky Transportation Cabinet. The authors would like to acknowledge the cooperation, suggestions, and advice of these people: Kevin G. Sutterer and W. A. Zatar. Many thanks are extended to the following undergraduate and graduate students in the Department of Civil Engineering who worked many hours to complete many facets of the project: Michael Davidson, Robert Goodpaster, and Scott Pabian.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
ACKNOWLEDGEMENTS	xi
LIST OF TABLES	xiii
LIST OF FIGURES	XV
1 INTRODUCTION 1.1 Background 1.2 Objective and Scope 1.3 Research Tasks and Outcome	1 1 1
2 SEISMIC SLOPE STABILITY ASSESSMENT 2.1 Introduction 2.2 Limit Equilibrium Slope Stability 2.2.1 Wedge Failure Mode 2.2.1 Circular Slope Failure Mode 2.2.3 Base Failure Mode 2.3 Slope Displacement Estimate 2.4 Seismic Slope Stability Assessment	4 4 5 6 7 8 9
 3 LIQUEFACTION POTENTIAL ASSESSMENT 3.1 Introduction 3.2 Methodology for Liquefaction Potential 3.2.1 Factor of Safety (FS) Against Liquefaction 3.2.1.1 Seismic Demand of Soil for Liquefaction Potential 3.2.1.2 Seismic Capacity or Resistance of Soil for Liquefaction Potential 3.2.1.3 Factor of Safety (FS) Determination 3.2.2 Liquefaction Potential Index (LPI) 	15 15 15 15 15 16 18 19
 4 SEISMIC EMBANKMENT RANKING 4.1 Seismic Embankment Ranking Procedure 4.2 Seismic Assessment System for Bridges (SASB) 	23 23 23
5 SUMMARY AND CONCLUSION	82
6 REFERENCES	85
APPENDIX A. SASB PROGRAM	87

LIST OF TABLES

Table E.1	Ranking of Critical Bridge Embankments along Western Kentucky	ii
	Parkways for a 50-Year Event Earthquake	
Table E.2	Ranking of Critical Bridge Embankments along Western Kentucky	vi
	Parkways for a 250-Year Event Earthquake	
Table 1.1	Seismic evaluation of bridges along parkways in western Kentucky	2
Table 2.1	Slope stability criteria	9
Table 3.1	Corrections to SPT (Youd et al. 2001)	18
Table 3.2	Liquefaction potential assessment of an embankment	20
Table 4.1	Embankment ranking category	23

Seismic Ranking of Bridges for the 50-year seismic Event, per county

Table 4.2: Ranking of Bridges in Butler County	24
Table 4.3: Ranking of Bridges in Caldwell County	25
Table 4.4: Ranking of Bridges in Christian County	26
Table 4.5: Ranking of Bridges in Daviess County	28
Table 4.6: Ranking of Bridges in Fulton County	30
Table 4.7: Ranking of Bridges in Graves County	31
Table 4.8: Ranking of Bridges in Grayson County	34
Table 4.9: Ranking of Bridges in Hardin County	36
Table 4.10: Ranking of Bridges in Henderson County	37
Table 4.11: Ranking of Bridges in Hickman County	39
Table 4.12: Ranking of Bridges in Hopkins County	40
Table 4.13: Ranking of Bridges in Lyon County	44
Table 4.14: Ranking of Bridges in Marshall County	45
Table 4.15: Ranking of Bridges in Muhlenberg County	47
Table 4.16: Ranking of Bridges in Ohio County	49
Table 4.17: Ranking of Bridges in Warren County	51
Table 4.18: Ranking of Bridges in Webster County	52

Seismic Ranking of Bridges for the 250-year seismic Event, per county

Table 4.19:	Ranking of Bridges in I	Butler County	53
Table 4.20:	Ranking of Bridges in	Caldwell County	54
Table 4.21:	Ranking of Bridges in	Christian County	55
Table 4.22:	Ranking of Bridges in I	Daviess County	57
Table 4.23:	Ranking of Bridges in I	Fulton County	59
Table 4.24:	Ranking of Bridges in	Graves County	60
Table 4.25:	Ranking of Bridges in	Grayson County	63
Table 4.26:	Ranking of Bridges in I	Hardin County	65
Table 4.27:	Ranking of Bridges in I	Henderson County	66
Table 4.28:	Ranking of Bridges in I	Hickman County	68
Table 4.29:	Ranking of Bridges in I	Hopkins County	69
Table 4.30:	Ranking of Bridges in I	Lyon County	73
Table 4.31:	Ranking of Bridges in I	Marshall County	74
Table 4.32:	Ranking of Bridges in I	Muhlenberg County	76

Table	4.33: Ranking of Bridges in Ohio County	78
Table	4.34: Ranking of Bridges in Warren County	80
Table	4.35: Ranking of Bridges in Webster County	81
Table 5.1	Overall embankment ranking of parkway bridges in western Kentucky	83
Table 5.2	Ranking of embankments in the individual counties for 50- and	84
	250-year event earthquakes	

LIST OF FIGURES

Fig. 1.1	The five parkways in Western Kentucky in which seismic assessment	
	was conducted on the bridge embankments	3
Fig. 2.1	Time History-Response Spectra for a 50-year event in Kentucky	10
Fig. 2.2	Time History-Response Spectra for a 250-year event in Kentucky	10
Fig. 2.3	Wedge failure mode of an embankment	11
Fig. 2.4	Circular slope failure mode: case I	11
Fig. 2.5	Circular slope failure mode: case II	12
Fig. 2.6	Circular slope failure mode: case III	12
Fig. 2.7	Base failure mode of an embankment	13
Fig. 2.8	Slope stability assessment process	14
Fig. 3.1	SPT clean-sand base curve for magnitude of 7.5 earthquakes	
	with data from liquefaction case histories (Youd et al. 2001)	21
Fig. 3.2	Liquefaction potential assessment process	22

1 INTRODUCTION

1.1 Background

Western Kentucky lies just east of the New Madrid Seismic Zone (NMSZ). The zone to date remains one of the most hazardous seismic zones in central United States. Historical evidence indicated that the largest reported earthquakes along this fault occurred in the winter of 1811 and 1812, registering a magnitude of 7.5 (i.e. earthquakes having magnitude of 7.0 to 7.9 can cause major damage over an area of beyond 100 kilometer according to the Richter scale) or greater on the Richter scale. Accordingly, reverberations from these earthquakes were felt throughout the entire eastern region of the United States. If an earthquake of similar intensity were to occur today, an even more damaging outcome is anticipated, which could have severe social, economical impact, etc., in that region (i.e. Western Kentucky).

The Kentucky Transportation Cabinet (KTC) of the Commonwealth of Kentucky has commissioned several studies intended to evaluate structural integrity of bridges in the vicinity of NMSZ in Western Kentucky in recent years. As a continuing effort, this study (KTC-06-xx/SPR246-02-5F) evaluates the seismic stability of bridge embankments for bridges located on and/or over the five parkways in Western Kentucky.

1.2 Objective and Scope

This report (SPR246-02-5F) is one in a series of six reports (see Table 1.1) aiming at evaluating the seismic stability of bridge embankments of bridges – in terms of soil stability and liquefaction potential of a bridge embankment during a predicted earthquake event. Bridge embankments that will be considered in this investigation are the bridges located on and/or over the five parkways in Western Kentucky. The five parkways shown in Fig. 1.1 are the Audubon, Pennyryle, Purchase, Western Kentucky, and William Natcher Parkways. The scope of the evaluation is the 389 bridges located along these parkways in Western Kentucky; where the majority were designed and constructed in an era when seismic design requirements were less stringent as compared to today's standard.

1.3 Research Tasks and Outcome

To conduct the seismic stability (i.e. soil stability and liquefaction potential) of the approach embankments of the bridges of the five parkways, pertinent information required were collected and the following tasks were conducted to obtain the information:

- 1. Compiling a bridge inventory. This specific task involved the collection of pertinent information such as location, geometry, construction type, soil types and layers, etc., of the bridges based on the available bridge plans.
- 2. Conducting site investigation. The research team carried out on-site investigations of the bridges to confirm information gathered from the previous task, and also to examine the current state of the bridges.
- 3. Carrying out analytical computation to assess the risk of the approach embankments of the bridges. Computer algorithms evaluating the slope stability (Chapter 2) and

liquefaction potential (Chapter 3) were written in Microsoft Assess 2003. Details of the methodologies for slope stability and liquefaction potential assessment are discussed in subsequent chapters. The bridge embankment ranking based on the potential for slope stability and liquefaction is presented in Chapter 4.

Tasks 1 and 2 are compiled in Report Number KTC-07-03/SPR246-02-2F. Information obtained from these tasks were then use in Task 3 to carry out seismic embankment evaluation. The significance of this study is to provide state and local agencies the ability to easily identify and prioritize bridges that are in need of repair or to undertake other appropriate actions.

NOTE: This report is the fifth (5 th) in a series of six (6) reports for SPR 206: "Seismic Evaluation of Bridges on/over Parkways in Western Kentucky". The six (6) reports are:	
Report Number:	Report Title:
(1) KTC-06-xx/SPR246-02-1F	Seismic Evaluation of Bridges and Embankments in Western Kentucky – Summary Report
(2) KTC-06-xx/SPR246-02-2F	Site Investigation of Bridges on/over Parkways in Western Kentucky
(3) KTC-06-xx/SPR246-02-3F	Preliminary Seismic Evaluation and Ranking of Bridges and Embankments in Western Kentucky
(4) KTC-06-xx/SPR246-02-4F	Detailed Seismic Evaluation of Bridges on/over Parkways in Western Kentucky
(5) KTC-06-xx/SPR246-02-5F [*]	Seismic Evaluation of Bridge Embankment on/over Parkways in Western Kentucky
(6) KTC-06-xx/SPR246-02-6F	LRFD Seismic Maps

 Table 1.1: Seismic evaluation of bridges along parkways in Western Kentucky

* Denotes current report

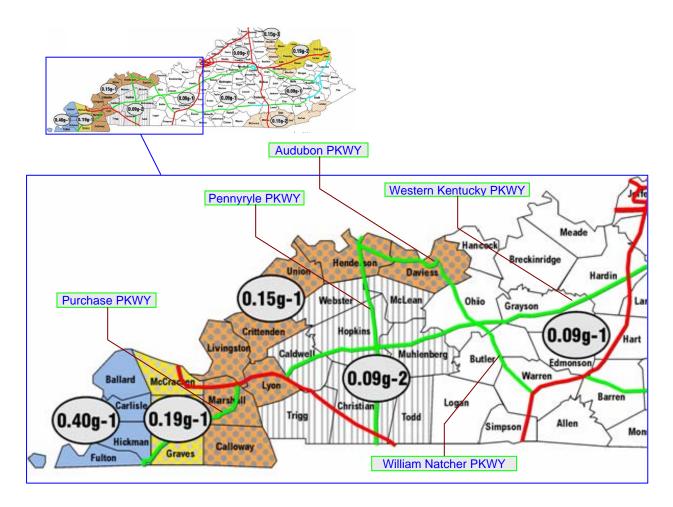


Fig. 1.1 The five parkways in western Kentucky in which seismic assessment was conducted on the bridge embankments.

2 SEISMIC SLOPE STABILITY ASSESSMENT

2.1 Introduction

This chapter presents the methodologies for predicting the seismic slope stability of a bridge embankment. Before the physical and mechanical behavior of slope stability mechanisms are discussed any further, the following assumptions are made in regard to the embankment and foundation conditions:

- 1. The embankment is constructed of a single material. It is recognized that the embankment fill may generally be of varying depth and distribution of multiple materials. Since the aim of this study is to perform a relatively simple 2-D preliminary evaluation of slope stability problems, this assumption thus reduces the complexity of the analytical formulation (i.e. constant material property).
- 2. The embankment top and base are level, and that the base of the embankment corresponds to the elevation of the toe of the embankment. This assumption determines the height of an embankment, and the overall embankment geometry can thus be defined by this height and the slope (i.e. the inclination is the ratio of the vertical to the horizontal distance). Embankment geometry (i.e. top and base) of bridges along these parkways will first be obtained from the original bridge plans, followed by subsequent verification through site investigation.
- 3. The foundation soils have a uniform undrained shear strength (S_u) ; usually different from the embankment soils. Foundation stratigraphy and geometry are likely more variable than that of the embankment; since the foundation is usually natural soil rather than controlled fill as in the case of embankment. The contact between softer foundation soils and a harder bedrock surface or stiff soils, for instance, may also be irregular. Therefore, detailed definition of these conditions typically requires a detailed subsurface exploration. Since the current investigation is intended to provide relative ranking of the embankments, not to predict the actual expected performance, such a complex task is neither necessary nor warranted at this preliminary stage.

2.2 Limit Equilibrium Slope Stability

The seismic slope stability of the bridge embankment is assessed using a two dimensional (2-D) limit equilibrium method in which the inertia force due to earthquake shaking is represented by a constant horizontal force in a pseudo-static state (i.e. the constant horizontal force is equal to the weight, W, of the potential sliding mass multiplied by a seismic acceleration coefficient, K_h) as shown in Figs. 2.3 to 2.7.

In this study, the seismic pseudo-static force in the vertical direction is ignored since it has minimal impact on the factor of safety (*FS*) calculated based on the driving and resisting forces of the various failure modes to be discussed later in this chapter. It is apparent that the driving force to cause slope instability or mass movement is a function of the seismic acceleration coefficient, K_h . The selection of K_h is subject to judgement, and its value is mostly empirical. For example, K_h used in US practice varies between 0.10 and 0.15. In other instances, values between 0.15 and 0.25 have been used in Japan in its Earth Dam Specification. A K_h

value of two-third (2/3) of the predicted peak ground acceleration (PGA) has been used by Sutterer (2000). Since Sutterer (2000) conducted his investigation in the Commonwealth of Kentucky, the same proposition (i.e. 2/3 time the PGA) will be applied to the slope stability investigation herein.

The PGA will likely vary from county to county due to attenuation of the motion as it travels from the source to the county seat of each county and the county's location in relation to the NMSZ. For the bridges along the five respective parkways, the PGA of each county is taken from a report titled *Source Zone, Recurrence Rates, and Time Histories for Earthquakes affecting Kentucky* (Street et. al. 1996). In this investigation, the 50-year and the 250-year time history events will be considered. The peak ground acceleration contour maps of these two time events are presented in Figs. 2.1 and 2.2, respectively.

It should be noted that, in addition to ignoring the vertical seismic pseudo-static force, the buoyant effect on the weight of submerged soil is also neglected to simplify the derivation. The simplification is consistent with the one applied by Sutterer et. al. (2000). As in any earthquake event, seismic forces and corresponding responses occur almost in an instance. Therefore, the event would take place with little or minimal dissipation of excess pore water pressure and, thus constitutes an undrained condition. Therefore, undrained shear strength (S_u) can and will be used in current investigation.

In this investigation, the FS will be determined (and lowest) from one of the following probable slope failure models: (1) wedge failure mode, (2) to circle slope failure mode, and (3) base failure mode. The mechanism of each failure mode is as follows.

2.2.1 Wedge Failure Mode

A wedge failure mode is depicted in Fig. 2.3 where is a certain plane of rupture of an embankment. A factor of safety (*FS*), as a result of the driving wedge and resisting friction at the rupture plan, can be expressed as

$$FS = \frac{2(1+a^2)}{(a-b)(1+a\cdot K_h)} \frac{S}{\gamma \cdot h}, \text{ when } a \le b+w$$
(2.1.a)

$$FS = \frac{2(1+a^2)(a+b)(w+2\cdot b)}{(1+a\cdot K_h)(a-b)(2\cdot b+w)^2 + 2(a-w+b)\cdot[a\cdot w+b(a-b)]}, \text{ when } a > b+w$$
(2.1.b)

Where

- γ = unit density of soil (force per cubic length)
- S = undrained shear strength of the embankment fill (force per unit area)
- *a* = potential sliding surface inclination
- b = embankment slope
- *h* = height of the potential sliding wedge
- *w* = dimensionless parameter for embankment width = ratio of width of embankment (top) to height of the potential sliding wedge (*h*)

Most of the parameters are also defined in Fig. 2.3.

Equations 2.1.a and 2.1.b can be rearranged for FS = 1, giving the critical K_{hf} causing failure:

$$K_{hf} = \frac{1}{a} \left\{ \frac{2(1+a^2)}{(a-b)} \frac{S}{\gamma \cdot h} - 1 \right\}, \text{ when } a \le b + w$$
(2.1.c)

$$K_{hf} = \frac{1}{a} \left\{ \frac{2(1+a^2)(a+b)(w+2b)}{(a-b)(2b+w)^2 + 2(a-b-w) \cdot [a \cdot w+b \cdot (a-b)]} \frac{S}{\gamma \cdot h} - 1 \right\}, \text{ when } a > b + w$$
(2.1.d)

2.2.2 Circular Slope Failure Mode

The circular slope failure mode may likely occur for embankments with homogeneous pure cohesive soil. This type of slope failure can be of one of the cases shown in Figs. 2.4, 2.5, and 2.6. The factor of safety (FS) for these cases can be expressed in an integrated equation as

$$FS = \frac{S}{\gamma \cdot h} \frac{12\theta_o \cdot r_o^2}{C_1 + K_h \cdot C_2}$$
(2.2.a)

Where *h*, *S*, and γ have the same definitions as described previously.

$$C_{1} = 3\sqrt{r_{o}^{2} - x_{o}^{2}} - b \cdot (3x_{o} + b) - 1$$

$$C_{2} = \left\{ x_{o}^{2} + 4\sqrt{r_{o}^{2} - x_{o}^{2}} - x_{o}\sqrt{x_{o}^{2} + 2\sqrt{r_{o}^{2} - x_{o}^{2}} - 1} - 2 \right\} \left(\sqrt{x_{o}^{2} + 2\sqrt{r_{o}^{2} - x_{o}^{2}} - 1} - x_{o} \right)$$

$$-b \left(3\sqrt{r_{o}^{2} - x_{o}^{2}} - 2 \right)$$

$$\left(\sqrt{2x^{2} + 2\sqrt{r_{o}^{2} - x_{o}^{2}} - 2} - 2x \sqrt{x^{2} + 2\sqrt{r_{o}^{2} - x_{o}^{2}} - 1} \right)$$

$$(2.2.b)$$

$$(2.2.c)$$

$$\theta_o = \arcsin\left(\frac{\sqrt{2x_o^2 + 2\sqrt{r_o^2 - x_o^2 - 2x_o\sqrt{x_o^2 + 2\sqrt{r_o^2 - x_o^2 - 1}}}}{2r_o}\right)$$
(2.2.d)

It is apparent that Eq. 2.2.is a function of variables x_o , r_o , and h, and the minimum *FS* is obtained when h is equal to the overall height of the embankment H (i.e. the circular surface extending upward from the toe of the embankment represents the most probable rupture surface). Therefore, to obtain the minimum FS, only values x_o and r_o should be optimized. It should be noted that the slope failure depicted in Fig. 2.5 represents a special case with $x_o = 0$, and the slope failure depicted in Fig. 2.6 applies for a special case of $x_o = -x_o$.

Rearranging Eq. 2.2.a for FS = 1 gives the critical horizontal acceleration coefficient K_{hf} causing failure as

$$K_{hf} = \frac{12\theta_o \cdot r_o^2 \cdot \frac{S}{\gamma \cdot h} - C_1}{C_2}$$
(2.2.e)

2.2.3 Base Failure Mode

Base failure mode is depicted in Fig. 2.7, where it is likely to take place when there is softer natural soil stratum present beneath the embankment. To simplify the mathematical computation, generally, a circular rupture surface similar to that of the circular slope failure mode is assumed. It is also further assumed that the embankment fill and the foundation (i.e. natural) soil have the same unit density (γ).

In this case, the height of the embankment fill is also the height of the embankment (h = H). The foundation (natural) soil depth is $d \cdot h$, and rupture arc surface radius is defined in Fig. 2.7. r_o , x_o , and d are dimensionless parameters, and the θ_o , θ_1 represent the angles of arc segments in potential failure arc surface.

The factor of safety (FS) is therefore described by the following equations

$$FS = \frac{12(\theta_o \cdot \lambda + \theta_1) \cdot r_o^2}{(D_1 + K_h D_2)} \cdot \frac{S}{\gamma \cdot h}$$
(2.3.a)

Where

$$\lambda = \frac{S_o}{S} \tag{2.3.b}$$

$$D_{1} = b(3x_{o} - b) + 3\left[d(2r_{o} - d) - x_{o}^{2}\right] + \left\{\sqrt{d(1+d)(2r_{o} - d)(2r_{o} - d - 1)} + d^{2} - 2r_{o}d - 2d + 2r_{o} - 1\right\} + \sqrt{2}\left[r_{o}(1+2d) - d(1+d) - \sqrt{d(1+d)(2r_{o} - d)(2r_{o} - d - 1)}\right]^{3/2} \sin(\theta_{o} + \theta_{1})$$

$$D_{1} = 4\left[d(2r_{o} - d)(2r_{o} - d - 1) + 2\left[\sqrt{d(1+d)(2r_{o} - d - 1)}\right]^{3/2} \sin(\theta_{o} + \theta_{1}) \right]$$

$$(2.3.c)$$

$$D_{2} = 4[d(2r_{o}-d)]^{7/2} + b(3r_{o}-3d-1) + 3[\sqrt{d}(2r_{o}-d) - x_{o}](2r_{o}-2d-1) + [\sqrt{(1+d)(2r_{o}-d-1)} - \sqrt{d(2r_{o}-d)}](3r_{o}-3d-2) + \sqrt{2}[r_{o}(1+2d) - d(1+d) - \sqrt{d(1+d)(2r_{o}-d)(2r_{o}-d-1)}]^{3/2} \cos(\theta_{o}+\theta_{1})$$

$$(2.3.d)$$

$$r_{o} = d$$

$$\theta_o = \arccos \frac{r_o - d}{r_o} \tag{2.3.e}$$

$$\theta_1 = \arcsin\frac{\sqrt{2r_o(1+2d) - 2d(1+d) - 2\sqrt{d(1+d)(2r_o - d)(2r_o - d - 1)}}}{2r_o}$$
(2.3.f)

Most of the parameters are defined in Fig. 2.7. S_o is the undrained shear strength of the subsurface foundation soil, and S is the undrained shear strength in the embankment. The factor of safety (FS) is a function of two variables r_o and x_o . Therefore, optimization is required to find the values for r_o and x_o for the minimum FS.

Rearranging Eq. 2.3.a for FS = 1, the critical horizontal acceleration coefficient K_{hf} causing failure can be obtained as

$$K_{hf} = \frac{12(\lambda \cdot \theta_o + \theta_1) \cdot r_o^2 \cdot \frac{S}{\gamma \cdot h} - D_1}{D_2}$$
(2.3.g)

2.3 Slope Displacement Estimate

It should be noted that the K_h (i.e. 2/3 of the peak ground acceleration) in Section 2.2 accounts for embankments in which the seismic acceleration never exceeds the acceleration causing failure, resulting in little to no movement. Since the selected K_h represents one or several brief loads during the seismic event, it is therefore of interest to know for those slopes with a factor of safety less than one as to how far the mass actually moved while the ground motion was taking place.

The effects of earthquakes on embankment stability in terms of the deformations they produced were first proposed by Newmark (1965). In the prediction of slope displacement, Newmark (1965) used a sliding block analogy which assumes a slope can be simulated as a wedge resting on an inclined plane. The method, used for over 30 years, has since been refined by various reseachers. In this study, the equation by Dodds (1997), modified from Ambraseys and Menu (1988), will be used to make slope displacement estimate

$$log_{10}(u) = \alpha + \beta_1 \log_{10} \left(1 - \frac{A_y}{A_{max}} \right) + \beta_2 \log_{10} \left(\frac{A_y}{A_{max}} \right)$$
(2.4)

The parameters α , β_1 , and β_2 vary with earthquake magnitude ($M_{b,Lg}$). The following linear relations can be used to calculate these parameters for magnitude of 4.5 to 7.5 on both bedrock and soil sites in western Kentucky, which were recommended by Sutterer et. al. (2000):

$$\begin{aligned} \alpha_{bedrock} &= 0.735 \cdot M_{b,Lg} - 4.41 \\ (\beta_1)_{bedrock} &= 0.35 \cdot M_{b,Lg} + 1.94 \\ (\beta_2)_{bedrock} &= -0.15 \cdot M_{b,Lg} + 0.21 \end{aligned}$$

$$(2.5)$$

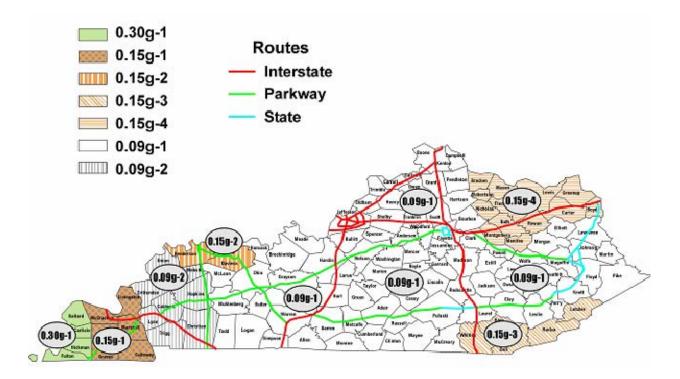
$$\alpha_{soil} = 1.025 \cdot M_{b,Lg} - 6.292$$

$$(\beta_1)_{soil} = -0.174 \cdot M_{b,Lg} + 3.58$$

$$(\beta_2)_{soil} = -0.056 \cdot M_{b,Lg} - 0.794$$
(2.6)

u is Eq. 2.4 is the estimate embankment or slope displacement in centimeter. A_y is defined as the yield acceleration, which is equal to the critical horizontal coefficient (K_{hf}) multiplied by the gravity (g). A_{max} is the estimated peak ground acceleration expected for an event of a specific return period. When the ratio of A_y/A_{max} is less than one, some displacement would be expected to occur (i.e. when ground acceleration exceeds the yield acceleration).

2.4 Seismic Slope Stability Assessment


Newmark (1965) prescribed that displacement of 0 to 10 cm are unlikely to correspond to serious landslide. On the other hand, when calculated displacement exceeds 100 cm a damaging landslide is highly probable. Displacements in the range of 10 to 100 cm may likely be sufficient to cause serious ground cracking or loss of strength to contribute in continuing or post-earthquake failure.

Newmark's analysis constituted a highly idealized and simplistic failure mechanism; therefore, judgment is required to determine whether the displacement criteria set forth can be accommodated safely. Considering the specific conditions in western Kentucky, both the factor of safety (FS) and the predicted embankment displacement (u) will be used to assess the embankment stability of the bridges along the five parkways as summarized in Table 2.1 (see also flow chart in Fig. 2.8).

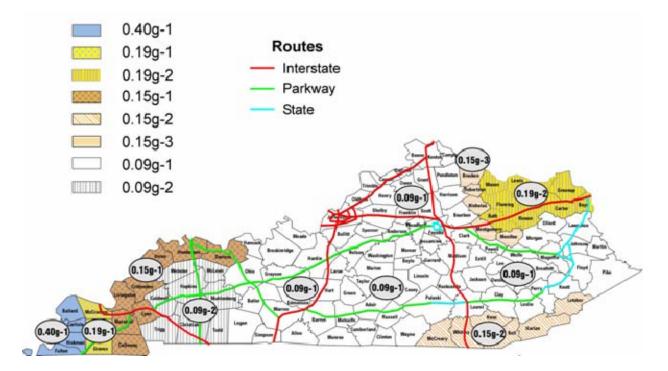

Classification	General description
Class I	FS > 1.0 (stable slope condition)
Class II	$FS \le 1.0$, and $u \le 10$ cm (critical but not unstable)
Class III	$FS \le 1.0$, and $u > 10$ cm (unstable, detailed sub-surface exploration and evaluation recommended)

 Table 2.1: Slope stability criteria

Over 300 bridges on the five parkways were evaluated for slope stability (Section 2.2), and subsequent displacement evaluation (Section 2.3, when FS is less than one) – constituting a complete slope stability assessment in this study.

Fig. 2.1 – Time History-Response Spectra for a 50-year event in Kentucky (Identification Map for 90 Percent Probability of Not Being Exceeded in 50 Years)

Fig. 2.2 – Time History-Response Spectra for a 250-year event in Kentucky (Identification Map for 90 Percent Probability of Not Being Exceeded in 250 Years)

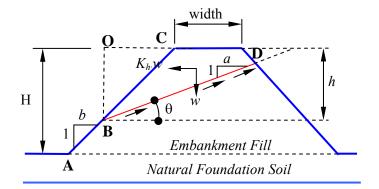


Fig. 2.3 – Wedge failure mode of an embankment

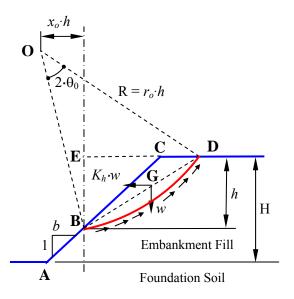


Fig. 2.4 – Circular slope failure mode: case I

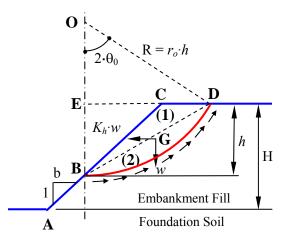


Fig. 2.5 – Circular slope failure mode: case II

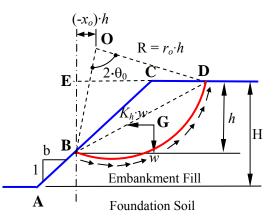


Fig. 2.6 – Circular slope failure mode: case III

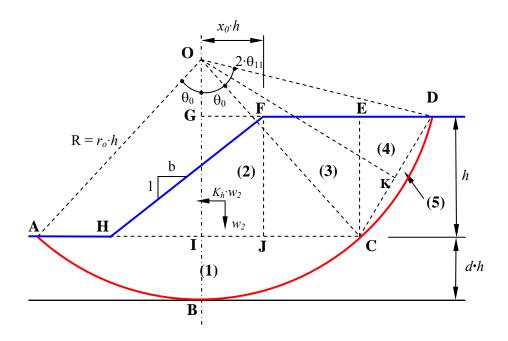


Fig. 2.7 – Base Failure mode of an embankment

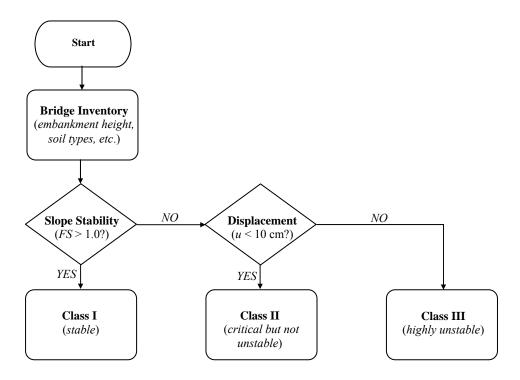


Fig. 2.8 – Slope stability assessment process

3 LIQUEFACTION POTENTIAL ASSESSMENT

3.1 Introduction

Liquefaction is defined as the transformation of a granular material from a solid to a liquefied state as a consequence of increased pore-water pressure and reduced effective stress (Marcuson 1978). Increased pore-water pressure is induced by the tendency of granular materials to compact when subjected to cyclic shear deformations. The change of state occurs most readily in loose to moderately dense granular soils with poor drainage, such as silty sands or sands and gravels capped by or containing seams of impermeable sediment. As liquefaction occurs, the soil stratum softens, allowing large cyclic deformations to occur. In loose materials, the softening is also accompanied by a loss of shear strength that may lead to large shear deformations or even flow failure under moderate to high shear stresses, such as beneath a foundation or sloping ground. In moderately dense to dense materials, liquefaction leads to transient softening and increased cyclic shear strains, but a tendency to dilate during shear inhibits major strength loss and large ground deformations. A condition of cyclic mobility or cyclic liquefaction may develop following liquefaction of moderately dense granular materials. Beneath gently sloping to flat ground, liquefaction may lead to ground oscillation or lateral spread as a consequence of either flow deformation or cyclic mobility. Loose soils also compact during liquefaction and reconsolidation, leading to ground settlement. Sand boils may also erupt as excess pore water pressures dissipate.

3.2 Methodology for Liquefaction Potential

Many procedures have been developed over the last forty years to evaluate the liquefaction potential. Of these procedures, the most popular one is provided by Seed and Idriss (1971). This method, known also as the simplified procedure, has been modified and refined since its first inception, through Seed (1979), Seed and Idriss (1982), and Seed et. al. (1985). In 1985, the National Research Council sponsored a workshop in which 36 experts and observers thoroughly reviewed the state-of-knowledge for assessing liquefaction hazard. The resulting report (NRC 1985) from the workshop has since become the standard and reference for liquefaction hazard assessment for quite sometime. Most recently, Youd et. al. (2001) conducted a workshop in which 20 experts updated and incorporated new procedures and findings.

The method from that workshop (Youd et. al. 2001) will be used to conduct the liquefaction potential assessment for the bridge embankments along the five parkways. The assessment methodology involving the determination of factor of safety [seismic demand (Section 3.2.1.1) and capacity (Section 3.2.1.2)] of liquefaction and liquefaction potential index (LPI) will be discussed as follows.

3.2.1 Factor of Safety (FS) against Liquefaction

3.2.1.1 Seismic Demand of Soil for Liquefaction Potential

The seismic demand on a soil layer, expressed in terms of CSR (Cyclic Stress Ratio), can be computed as follows (Seed and Idriss 1971):

$$CSR = \frac{(\tau_h)_{avg}}{\sigma'_o} \cong 0.65 \frac{a_{max}}{g} \cdot \frac{\sigma_o}{\sigma'_o} \cdot r_d$$
(3.1)

Where

 $(\tau_h)_{avg}$ = the average cyclic shear stress during the time history of interest a_{max} = peak horizontal acceleration at the ground surface generated by the earthquake g = acceleration of gravity σ_0 = total vertical overburden stress σ'_0 = effective vertical over burden stresses r_d = stress reduction coefficient

The r_d coefficient accounts for flexibility of the soil profile. It depends upon the soil profile, and the variability range for different soil profile increase with depth. The following equation presented in Youd et al. (2001) will be used to determine the value of r_d

$$r_d = \frac{(1.000 - 0.4113z^{0.5} + 0.04052z + 0.001753z^{1.5})}{(1.000 - 0.4177z^{0.5} + 0.05729z - 0.006205z^{1.5} + 0.001210z^2)}$$
(3.2)

z is the depth of beneath ground surface in meters. A water table at a depth of 10 ft beneath the ground surface was assumed in the analysis to represent a probable scenario for all bridges without detailed subsurface exploration.

3.2.1.2 Seismic Capacity or Resistance of Soil for Liquefaction Potential

The capacity of the soil to resist liquefaction, expressed in terms of CRR (Cyclic Resistance Ratio), can be obtained commonly through a variety of field tests that includes the standard penetration test (SPT), the cone penetration test (CPT), shear-wave velocity measurements (Vs), and the Becker penetration test (BPT). By far, the soil data in majority of the bridge plans of the five parkways was determined using the SPT (N-value) method.

The relation between the SPT test value and the cyclic resistance ratio (CRR) (or cyclic stress ratio, CSR) which is the seismic capacity of a given soil is depicted in Fig. 3.1. In the figure, $(N_1)_{60}$ is the SPT blow count normalized to an overburden pressure of approximately 100 kPa (1 ton/sq ft) and a hammer energy ratio or hammer efficiency of 60%. The graph shows sites where liquefaction effects were or were not observed following past earthquakes with magnitudes of approximately 7.5. The CRR curves with fines contents of greater than or equal to 5%, 15%, and 35%, on the graph were conservatively positioned to separate regions with the effect of liquefaction from regions with little to no liquefaction. Curves were developed for granular soils with the fines contents of 5% or less, 15%, and 35% as shown on the plot.

The *CRR* curve shown in Fig. 3.1 for fines content of greater than or equal to 5% at an earthquake magnitude of 7.5 (indicated by a sub-script 7.5) is approximated by the following equation (Youd et. al. 2001):

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{\left[10 \cdot (N_1)_{60} + 45\right]^2} - \frac{1}{200}$$
(3.3)

It is generally agreed that for $(N_1)_{60} \ge 30$, clean granular soils are too dense to liquefy, and therefore, are classified as non-liquefiable. It is evident that the *CRR* value changes with the increase or decrease of fines content (Fig. 3.1), among other grain characteristics. To account for different percentage of fines content, the following correction of $(N_1)_{60}$ shall be made $(N_1)_{60cs}$ (Youd et. al. 2001):

$$(N_1)_{60cs} = \alpha + \beta (N_1)_{60} \tag{3.4}$$

Where α and β can be determined from the following relationships (Youd et. al. 2001):

For fines content, $FC \leq 5\%$,

$$\alpha = 0$$
 (3.5.a)
 $\beta = 1.0$ (3.6.a)

For fines content, 5% < FC < 35%,

$$\alpha = exp\left[1.76 - \left(\frac{190}{FC^2}\right)\right]$$
(3.5.b)

$$\beta = \left[0.99 + \left(\frac{FC^{1.5}}{1000} \right) \right]$$
(3.6.b)

For fines content, $FC \ge 35\%$,

$$\alpha = 5.0 \tag{3.5.c}$$

$$\beta = 1.2 \tag{3.6.c}$$

In addition to fines content and grain characteristics, other factors that may affect the SPT count are included in the following equation (Youd et. al. 2001):

$$(N_1)_{60} = N_m C_N C_E C_B C_R C_S \tag{3.7}$$

Where

 N_m = measured standard penetration resistance

 C_N = factor to normalize N_m to a common reference effective overburden stress

 C_E = correction for hammer energy ratio (ER)

 C_B = correction factor for borehole diameter

 C_R = correction factor for rod length

 C_S = correction factor for samplers with or without liners

These correction factors are tabulated in Table 3.1.

Factor	Equipment variable	Term	Correction
Overburden pressure	_	C_N	$2.2/(1.2 + \sigma_{vo}/P_a)$
Overburden pressure	_	C_N	$C_N \leq 1.7$
Energy ratio	Donut hammer	C_E	0.5-1.0
Energy ratio	Safety hammer	C_E	0.7-1.2
Energy ratio	Automatic-trip Donut-type hammer	C_E	0.8-1.3
Borehole diameter	65-115 mm	C_B	1.0
Borehole diameter	150 mm	C_B	1.05
Borehole diameter	200 mm	C_B	1.15
Rod length	< 3 m	C_R	0.75
Rod length	3-4 m	C_R	0.8
Rod length	4-6 m	C_R	0.85
Rod length	6-10 m	C_R	0.95
Rod length	10-30 m	C_R	1.0
Sampling method	Standard sampler	C_S	1.0
Sampling method	Sampler without liners	C_S	1.1-1.3

 Table 3.1: Corrections to SPT (Youd et. al. 2001)

The C_N factor shown in Table 3.1 is used to normalize the measured standard penetration resistance (N_m) to an effective overburden pressure, σ_{vo} , with atmospheric pressure, P_a , equals to 100 KPa or 1 tsf or 1 atm. The C_N factor is verified and recommended for use for an effective overburden pressure of less than and equal to 200 KPa or 2 tsf (Youd et. al. 2001)

3.2.1.3 Factor of Safety (FS) Determination

The factor of safety (*FS*) for liquefaction potential can therefore be calculated, once the demand (*CRS*, Section 3.2.1.1) and the resistance (*CRR*_{7.5}, Section 3.2.1.2) of a given soil are determined, as follows

$$FS = \frac{CRR_{7.5}}{CSR}$$
(3.8.a)

It should be noted that Eq. 3.8.a applies only to earthquakes with a magnitude of 7.5. For different magnitude of earthquakes, a magnitude scaling factor (*MSF*) shall be introduced (Seed and Idriss 1982)

$$FS = \frac{CRR_{7.5}}{CSR} \cdot MSF$$
(3.8.b)

Where MSF is defined as

. . .

$$MSF = \frac{10^{2.24}}{M_w^{2.56}}, \text{ and } M_w \text{ is earthquake magnitude}$$
(3.9)

The simplified procedure of determining the factor of safety was derived largely based on historical data set which mainly for cases with level to gently sloping sites (i.e. low static shear stress) and validated for cases with depths less than about 15 m (i.e. low overburden pressure). Therefore, for embankments or sites with high overburden pressure and/or high static shear stress, correction factors high overburden pressure, K_{σ} , and high static shear stress, K_{α} , can be accounted for by

$$FS = \frac{CRR_{7.5}}{CSR} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$
(3.8.c)

Since most of the bridge embankments of the parkways are gently sloped, the correction factor for static shear stress, K_{α} , will be equal to unity (1.0). The high overburden pressure correction factor, K_{σ} , will be determined using Eq. 3.10

$$K_{\sigma} = (\sigma_{vo}^{'}/P_{a})^{(f-1)}$$
(3.10)

Eq. 3.10 is derived by Hynes and Olsen (1999). The σ_{vo} and P_a are as defined previously. f is an exponent that is a function of site conditions, including relative density, stress history, aging, and over consolidation ratio (Youd et. al. 2001). It is generally agreed that f can take the following values

Relative densities between
$$40 - 60\%$$
:
 $f = 0.7 - 0.8$ (3.11.a)

(3.11.b)

Relative densities between 60 - 80%: f = 0.6 - 0.7

The method (Eqs. 3.8.a, b, or c) provides a relatively quick assessment of liquefaction potential of a given soil or embankment. In general, when FS is equal or greater than 1.0, the site is in no danger of liquefaction. When FS is less than 1.0, the risk of an embankment facing liquefaction is undoubtedly greater. In such cases, the risk is then classified using the subsequent methodology.

3.2.2 Liquefaction Potential Index (LPI)

For FS less than 1.0, the evaluation of liquefaction failure of a given soil or embankment can be determined using the liquefaction potential index (LPI) introduced by Iwasaki et. al. (1982a and b). The method combines depth (z), cumulative thickness of liquefiable intervals, and factor of safety (FS) of liquefiable intervals into a single parameter or index known as LPI:

$$LPI = \int_0^{20} F(z) \cdot w(z) dz$$
(3.12)

Where

$$F(z) = 1 - FS$$
 for $FS < 0$ (3.13)
 $w(z) = 10 - 0.5z$ (3.14)

z is the depth in meter and limiting the liquefiable overall soil depth to 20 m. w(z) is calculated for the critical soil layer across the profile. A summary of how liquefaction potential is classified for embankment, when *FS* is less than 1.0, is presented in Table 3.2 (also see flow chart in Fig. 3.2).

Table 5.2. Elqueraction potential asse	
Liquefaction potential Index*	Classification
0 < LPI < 5	Low
$5 \le LPI < 15$	Moderate
$15 \leq LPI$	High

 Table 3.2: Liquefaction potential assessment of an embankment

* when *FS* (Section 3.2.1) < 1.0. Embankments with $FS \ge 1.0$ are non-liquefiable.

A liquefaction potential assessment was performed on all bridge embankments.

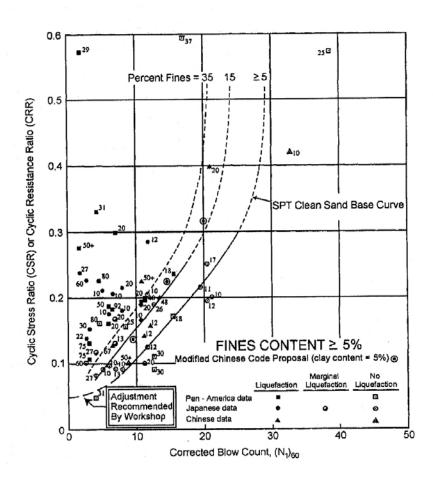


Fig. 3.1 – SPT clean-sand base curve for magnitude of 7.5 earthquakes with data from liquefaction case histories (Youd et. al. 2001).

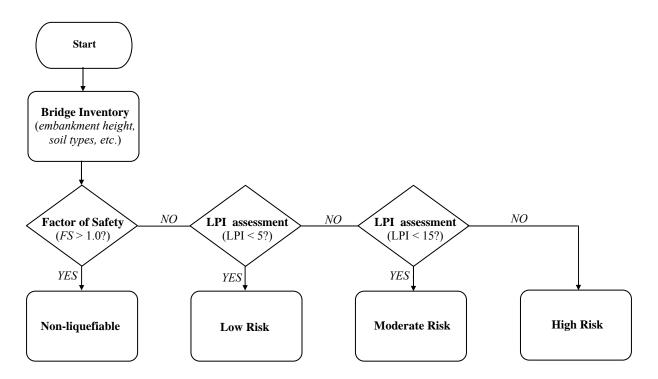


Fig. 3.2 – Liquefaction potential assessment process

4 SEISMIC EMBANKMENT RANKING

4.1 Seismic Embankment Ranking Procedure

Having discussed the slope stability (Chapter 2) and liquefaction potential (Chapter 3) assessment procedures, the individual bridge embankment for the five parkway bridges in western Kentucky shall be ranked in the following manner (Table 4.1).

Table 4.1:	Embankment ranking category

Category	Descriptions
С	Slope stability class I (stable), low liquefaction potential or non-liquefiable, and/or combination
В	Slope stability class II (critical), moderate liquefaction potential, and/or combination
Α	Slope stability class III (unstable), high liquefaction potential, and/or combination

All of the bridge embankments of the five parkways will be ranked in accordance to the procedures and classifications established before. To assist government officials (i.e. city, county, state, etc) in identifying the potential seismic vulnerability in bridge embankment, these methodologies will be applied to the individual counties where the five parkways lie. Additionally, the bridge embankments in each of the counties will also be ranked starting from the one with the highest seismic risk. For instance, all bridge embankments classified as having category A in a county will be ordered numerically such as A1, A2, and so forth, with bridge A1 being the most susceptible to seismic hazard, A2 being the second most susceptible in that county, and so forth.

4.2 Seismic Assessment System for Bridges (SASB)

The ranking assessment of embankment is coded into program using Microsoft Access 2003, and named seismic assessment system for bridges (SASB). SASB performs and ranks an embankment in accordance to the procedures discussed in previous chapters. The use of the SASB program and its requirement are presented in Appendix A.

Summary of the embankment ranking for bridges along the parkways in western Kentucky for 50-year event earthquakes are presented in Tables 4.2 to 4.18, and 250-year event earthquakes in Tables 4.19 to 4.35.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	<u> </u>	tability Ass		Liquefact	tion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
16 9007 B00061	0.09	45.79	0.14	>>45.0	Class III	0	Low	Class A	A1
16 9007 B00057	0.09	22.6	1.23		Class I	0	Low	Class C	C1
16 9007 B00057 P									C1
16 9007 B00062	0.09	20	1.27		Class I	0	Low	Class C	C2
16 9007 B00059	0.09	24.7	1.3		Class I	0	Low	Class C	C3
16 9007 B00059 P									C3
16 9007 B00060	0.09	26.19	1.32		Class I	0	Low	Class C	C4
16 9007 B00060 P									C4
16 9007 B00063	0.09	7	2.02		Class I	0	Low	Class C	C5
16 9001 B00034	0.09	23.29	2.03		Class I	0	Low	Class C	C6
16 0231 B00054	0.09	22	2.15		Class I	0	Low	Class C	C7
16 0403 B00053	0.09	17.5	2.7		Class I	0	Low	Class C	C8
16 9007 B00055 C	0.09	Culvert			Culvert				C9
16 9007 B00056 C	0.09	Culvert			Culvert				C9
16 9007 B00058 C	0.09	Culvert			Culvert				C9

Table 4.2: Seismic Embankment Ranking of Bridges in Butler County on/over Western Kentucky Parkways for 50-year event earthquakes

¹ Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefaction Potential Evaluation		Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
17 9001 B00033	0.09	22	0.62	>>45.0	Class III	0	Low	Class A	A1
17 9001 B00033 P									A1
17 9001 B00029	0.09	33.59	1.02		Class I	0	Low	Class C	C1
17 9001 B00029 P									C1
17 0293 B00007	0.09	15	1.51		Class I	0	Low	Class C	C2
17 0091 B00037	0.09	13.12	1.96		Class I	0	Low	Class C	C3
17 2619 B00048	0.09	12.67	2.66		Class I	0	Low	Class C	C4
17 2613 B00061	0.09	4	5.06		Class I	0	Low	Class C	C5
17 9001 B00060	0.09	6	5.35		Class I	0	Low	Class C	C6
17 9001 B00028 C		Culvert							C7
17 9001 B00030 C		Culvert							C7
17 9001 B00031 C		Culvert							C7
17 9001 B00032 C		Culvert							C7

Table 4.3: Seismic Embankment Ranking of Bridges in Caldwell County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1. A bridge with a ranking of A1 is more suggestible to demage the

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
24 9004 B00099	0.09	25.29	0.77	>>45.0	Class III	0	Low	Class A	A1
24 9004 B00098	0.09	22.79	1.09		Class I	0	Low	Class C	C1
24 9004 B00102	0.09	32.89	1.09		Class I	0	Low	Class C	C2
24 9004 B00102 P									C2
24 9004 B00096	0.09	20	1.16		Class I	0	Low	Class C	C3
24 9004 B00095	0.09	24.6	1.43		Class I	0	Low	Class C	C4
24 9004 B00117	0.09	10	1.57		Class I	0	Low	Class C	C5
24 9004 B00105	0.09	12.79	1.64		Class I	0	Low	Class C	C6
24 9004 B00105 P									C6
24 9004 B00118	0.09	16.6	1.92		Class I	0	Low	Class C	C7
24 9004 B00118 P									C7
24 9004 B00093	0.09	20.2	2.03		Class I	0	Low	Class C	C8
24 9004 B00093 P									C8
24 9004 B00104	0.09	20.59	2.11		Class I	0	Low	Class C	C9
24 9004 B00104 P									C9
24 9004 B00101	0.09	21	2.25		Class I	0	Low	Class C	C10
24 9004 B00100	0.09	9	3.02		Class I	0	Low	Class C	C11
24 9004 B00097	0.09	14.7	3.22		Class I	0	Low	Class C	C12

Table 4.4: Seismic Embankment Ranking of Bridges in Christian County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) ⁹ The selection of line for the state of the selection of the se

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3. ¹⁰ No = Non liquefiable (ES > 1.0 and LPI = 0.0): Low (LPI < 5): Moderate (5 < 1.0)

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) ¹¹ The extreme of ambundment behavior is defined in Table 4.1

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵ (ft)	Slope Stability Assessment			Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment
			FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
24 9004 B00094	0.09	10	3.84		Class I	0	Low	Class C	C13
24 9004 B00116	0.09	2	10		Class I	0	Low	Class C	C14
24 9004 B00092 C	0.09	Culvert			Culvert				C15
24 9004 B00103 C	0.09	Culvert			Culvert				C15
24 9004 B00106 C	0.09	Culvert			Culvert				C15

Table 4.4 (Cont'): Seismic Embankment Ranking of Bridges in Christian County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (*u*) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3. ¹⁰ No = Non liquefactor (F = 1.0 and LBI = 0.0): Law (*LBI* = 5): Moderate (5 < 1.0)

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA4	$_{GA^4}$ Height ⁵		tability As		Liquefact	ion Potential luation	Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
30 9005 B00059	0.15	20	0.18	>>85	Class III	16.16	High	Class A	A1
30 9005 B00059 P									A1
30 9005 B00058	0.15	25.79	0.12	>>85	Class III	5.72	Moderate	Class A	A2
30 9005 B00058 P		Parallel Bridge	0.12						A2
30 9007 B00082	0.15	14.29	0.41	>>85	Class III	5.98	Moderate	Class A	A3
30 9007 B00082 P									A3
30 9005 B00060	0.15	27.95	0.24	>>85	Class III	3.6	Low	Class A	A4
30 9007 B00081	0.15	12.29	0.29	>>85	Class III	4.03	Low	Class A	A5
30 9007 B00081 P									A5
30 9007 B00089	0.15	12	0.3	>>85	Class III	0.43	Low	Class A	A6
30 9007 B00089 P									A6
30 9005 B00063	0.15	24.03	0.31	>>85	Class III	0	Low	Class A	A7
30 9007 B00085	0.15	28.7	0.32	>>85	Class III	0	Low	Class A	A8
30 9007 B00085 P									A8
30 9005 B00061	0.15	31.09	0.34	>>85	Class III	0	Low	Class A	A9
30 9007 B00083	0.15	25.5	0.49	>>85	Class III	0	Low	Class A	A10
30 9007 B00094	0.15	12.69	0.58	9.6	Class II	0.01	Low	Class B	B1
30 9007 B00094 P									B1

Table 4.5: Seismic Embankment Ranking of Bridges in Daviess County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. ⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

Class I = Stable; Class II = Childal (FS < 1.0 and U < 10 cm); and Class III = Onstable (FS < 1.0 and U > 1)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3. ¹⁰ No = Non liquefable (ES > 1.0 and LPI = 0.0): Low (LPI < 5): Moderate (5 < 1.0)

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) ¹¹ The extreme of ambaultment behavior is defined in Table 4.1

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope Stability Assessment			Liquefaction Potential Evaluation		Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
30 9007 B00088	0.15	11.69	0.69	8.1	Class II	0	Low	Class B	B2
30 9007 B00088 P									B2
30 9007 B00090	0.15	12	0.86	1.1	Class II	0	Low	Class B	B3
30 9007 B00090 P									В3
30 9007 B00092	0.15	25.69	0.87	1.6	Class II	0	Low	Class B	B4
30 9007 B00093	0.15	20.5	1.24		Class I	0	Low	Class C	C1
30 9007 B00091	0.15	10	3.8		Class I	0	Low	Class C	C2
30 9007 B00084	0.15	3.7	5.01		Class I	0	Low	Class C	C3
30 9007 B00086	0.15	4.299	8.4		Class I	0	Low	Class C	C4
30 9005 B00062 C		Culvert			Culvert				C5
30 9007 B00087 C		Culvert							C5

Table 4.5 (Cont'): Seismic Embankment Ranking of Bridges in Daviess County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

2 The letter P indicates parallel bridges.

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures. Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky. 3

4

5 Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

6 The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. 8

Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) 9

The calculation of liquefaction potential index (LPI) is presented in Chapter 3. 10

No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) 11

The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵ (ft)	Slope S	Slope Stability Assessment			ion Potential luation	Seismic Embankment	Seismic Embankment
			FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
38 9003 B00055	0.3	29.69	0.17	>>200	Class III	19.82	High	Class A	A1
38 9003 B00055 P									A1
38 0307 B00015	0.3	27	0.18	>>200	Class III	29.81	High	Class A	A2
38 9003 B00053	0.3	14.5	0.21	>>200	Class III	22.96	High	Class A	A3
38 9003 B00053 P									A3
38 0051 B00012	0.3	21.3	0.24	>>200	Class III	5.04	Moderate	Class A	A4
38 9003 B00054	0.3	20	0.29	>>200	Class III	5.83	Moderate	Class A	A5
38 9003 B00054 P									A5
38 9003 B00056 C		Culvert							C1

Table 4.6: Seismic Embankment Ranking of Bridges in Fulton County on/over Western Kentucky Parkways for 50-year event earthquakes

38 9003 B00056 C Culvert

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet. 2

The letter P indicates parallel bridges.

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

4 Peak ground acceleration (PGA) is defined in Street et. al. (1996) for the state of Kentucky. 5

Embankment height is defined as the difference between the top embankment elevation and the ground elevation. 6

The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

9 The calculation of liquefaction potential index (LPI) is presented in Chapter 3.

10 No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) 11

The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefaction Potential Evaluation		Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
42 9003 B00170	0.15	14	0.39	>>85	Class III	5.43	Moderate	Class A	A1
42 9003 B00170 P									A1
42 0058 B00096	0.15	24.79	0.1	>>85	Class III	0	Low	Class A	A2
42 9003 B00154	0.15	26.39	0.1	>>85	Class III	0	Low	Class A	A3
42 9003 B00154 P									A3
42 9003 B00175	0.15	18.08	0.16	>>85	Class III	0	Low	Class A	A4
42 9003 B00162	0.15	11.89	0.19	>>85	Class III	0	Low	Class A	A5
42 9003 B00162 P									A5
42 9003 B00177	0.15	8.799	0.2	>>85	Class III	0	Low	Class A	A6
42 9003 B00177 P									A6
42 9003 B00176	0.15	11.5	0.22	>>85	Class III	0.73	Low	Class A	A7
42 9003 B00176 P									A7
42 9003 B00155	0.15	21.69	0.24	>>85	Class III	0	Low	Class A	A8
42 9003 B00155 P									A8
42 9003 B00169	0.15	28.2	0.26	>>85	Class III	0	Low	Class A	A9
42 9003 B00172	0.15	18.6	0.26	>>85	Class III	0	Low	Class A	A10
42 9003 B00160	0.15	11.6	0.3	>>85	Class III	0	Low	Class A	A11
42 9003 B00156	0.15	33.1	0.31	>>85	Class III	0	Low	Class A	A12

Table 4.7: Seismic Embankment Ranking of Bridges in Graves County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) ⁹ The selevation of linear of the set of the se

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	_	(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
42 9003 B00156 P			0.31						A12
42 9003 B00165	0.15	7.799	0.35	>>85	Class III	0	Low	Class A	A13
42 9003 B00165 P									A13
42 0944 B00180	0.15	24.4	0.4	N/A	Class III	0	Low	Class A	A14
42 1748 B00128	0.15	20.69	0.42	N/A	Class III	0	Low	Class A	A15
42 9003 B00167	0.15	9.3	0.43	>>85	Class III	0	Low	Class A	A16
42 9003 B00167 P									A16
42 0121 B00111	0.15	21.79	0.52	>>85	Class III	0	Low	Class A	A17
42 0301 B00028	0.15	20	0.52	>>85	Class III	0	Low	Class A	A18
42 9003 B00161	0.15	13.7	0.55	27.1	Class III	0	Low	Class A	A19
42 9003 B00166	0.15	4.5	0.58	8.1	Class II	0	Low	Class B	B1
42 9003 B00166 P									B1
42 0339 B00143	0.15	23.6	0.72	3.3	Class II	0	Low	Class B	B2
42 9003 B00159	0.15	9.5	0.82	1.2	Class II	0	Low	Class B	B3
42 9003 B00159 P									В3
42 9003 B00157	0.15	10.3	0.84	0.9	Class II	0	Low	Class B	B4
42 9003 B00157 P									B4
42 0080 B00106	0.15	18.5	0.92	0.5	Class II	0	Low	Class B	B5

Table 4.7 (Cont'): Seismic Embankment Ranking of Bridges in Graves County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

generally exceed three times the upper displacement limit for the peak ground acceleration present. ⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	<u> </u>	tability As	<u> </u>	Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	-	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
42 9003 B00163	0.15	10.19	1.02		Class I	-0.77	Low	Class C	C1
42 9003 B00163 P									C1
42 9003 B00164	0.15	12.2	1.05		Class I	0	Low	Class C	C2
42 0131 B00009	0.15	17.5	1.14		Class I	0	Low	Class C	C3
42 9003 B00158	0.15	10.7	1.27		Class I	0	Low	Class C	C4
42 9003 B00158 P									C4
42 9003 B00153	0.15	21.2	1.8		Class I	0	Low	Class C	C5
42 9003 B00168	0.15	14	2.08		Class I	0	Low	Class C	C6
42 9003 B00168 P									C6
42 9003 B00173	0.15	2.26	8.21		Class I	0	Low	Class C	C7
42 9003 B00173 P									C7
42 9003 B00171	0.15	0.5	10		Class I	0	Low	Class C	C8
42 9003 B00174 C	0.15	Culvert			Culvert				C9

Table 4.7 (Cont'): Seismic Embankment Ranking of Bridges in Graves County on/over Western Kentucky Parkways for 50-year event earthquakes

¹Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
43 0224 B00003	0.09	16.3	1.66		Class I	0	Low	Class C	C1
43 9001 B00069	0.09	17.66	1.69		Class I	0	Low	Class C	C2
43 0259 B00009	0.09	15	1.73		Class I	0	Low	Class C	C3
43 0185 B00019	0.09	26.2	1.81		Class I	0	Low	Class C	C4
43 0079 B00023	0.09	16.69	1.91		Class I	0	Low	Class C	C5
43 9001 B00070	0.09	20.69	1.98		Class I	0	Low	Class C	C6
43 9001 B00027	0.09	23.29	2.03		Class I	0	Low	Class C	C7
43 9001 B00027 P									C7
43 9001 B00060	0.09	16.35	2.11		Class I	0	Low	Class C	C8
43 9001 B00078	0.09	10.5	3		Class I	0	Low	Class C	C9
43 0088 B00006	0.09	10.79	3.14		Class I	0	Low	Class C	C10
43 9001 B00073	0.09	10.2	3.46		Class I	0	Low	Class C	C11
43 9001 B00026	0.09	9.5	3.47		Class I	0	Low	Class C	C12
43 9001 B00026 P									C12
43 9001 B00082	0.09	4	6.08		Class I	0	Low	Class C	C13
43 9001 B00076	0.09	1	8.16		Class I	0	Low	Class C	C14
43 9001 B00028 C		Culvert							C15
43 9001 B00029 C		Culvert							C15

Table 4.8: Seismic Embankment Ranking of Bridges in Grayson County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

Table 4.8 (Cont'): Seismic Embankment Ranking of Bridges in Grayson County on/over Western Kentucky Parkways for 50-year event earthquakes

BIN ^{1, 2, 3} PGA ⁴		Height ⁵	Slope S	Stability Ass	sessment	Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
43 9001 B00030 C		Culvert							C15
43 9001 B00031 C		Culvert							C15
43 9001 B00032 C	0.09	Culvert			Culvert				C15

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	tion Potential Iuation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
47 31W B00108	0.09	45.1	0.72	>>45.0	Class III	0	Low	Class A	A1
47 9001 B00093	0.09	32.5	1.09		Class I	0	Low	Class C	C1
47 9001 B00093 P									C1
47 31W B00153	0.09	27.09	1.13		Class I	0	Low	Class C	C2
47 9001 B00092	0.09	31.5	1.17		Class I	0	Low	Class C	C3
47 9001 B00092 P									C3
47 9001 B00127	0.09	34.09	1.26		Class I	0	Low	Class C	C4
47 9001 B00127 P									C4
47 9001 B00085	0.09	23.45	1.69		Class I	0	Low	Class C	C5
47 1136 B00053	0.09	17.99	1.84		Class I	0	Low	Class C	C6
47 9001 B00094	0.09	13.1	2.28		Class I	0	Low	Class C	C7
47 9001 B00094 P									C7
47 9001 B00045	0.09	19.2	2.29		Class I	0	Low	Class C	C8
47 9001 B00090	0.09	16	2.34		Class I	0	Low	Class C	C9
47 0084 B00043	0.09	16.76	2.4		Class I	0	Low	Class C	C10
47 9001 B00056	0.09	10	3.91		Class I	0	Low	Class C	C11
47 9001 B00095 C		Culvert							C12

Table 4.9: Seismic Embankment Ranking of Bridges in Hardin County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates s.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
51 9005 B00072	0.15	54.1	0.14	>>85	Class III	0	Low	Class A	A1
51 9004 B00069	0.15	28.6	0.39	>>85	Class III	0	Low	Class A	A2
51 9004 B00062	0.15	26	0.51	>>85	Class III	0	Low	Class A	A3
51 9004 B00062 P									A3
51 9004 B00111	0.15	27.3	0.6	>>85	Class III	0	Low	Class A	A4
51 9004 B00065	0.15	18	0.61	>>85	Class III	0	Low	Class A	A5
51 9004 B00064	0.15	15	0.76	4.5	Class II	0	Low	Class B	B1
51 0425 B00137	0.15	18	0.77	2	Class II	0	Low	Class B	B2
51 0425 B00137 P									B2
51 9004 B00073	0.15	27	0.8	1.4	Class II	0	Low	Class B	B3
51 9004 B00073 P									B3
51 9005 B00074	0.15	26.1	0.81	>>85	Class II	0	Low	Class B	B4
51 9005 B00075	0.15	20.89	0.82	4.3	Class II	0	Low	Class B	В5
51 9005 B00073	0.15	25.5	0.92	1.4	Class II	0	Low	Class B	B6
51 9005 B00073 P									B6
51 9005 B00077	0.15	8.4	0.96	0.3	Class II	0	Low	Class B	B7
51 9005 B00077 P									B7
51 9004 B00112	0.15	19.5	1.08		Class I	0	Low	Class C	C1

Table 4.10: Seismic Embankment Ranking of Bridges in Henderson County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Embankment	Seismic Embankment Ranking ¹²
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	
51 9005 B00076	0.15	21.1	1.09		Class I	0	Low	Class C	C2
51 9004 B00066	0.15	25	1.31		Class I	0	Low	Class C	C3
51 9004 B00067	0.15	19.69	1.45		Class I	0	Low	Class C	C4
51 9005 B00080	0.15	27.89	1.51		Class I	0	Low	Class C	C5
51 9005 B00078	0.15	24	1.75		Class I	0	Low	Class C	C6
51 9004 B00068	0.15	6.5	2.36		Class I	0	Low	Class C	C7
51 9004 B00068 P									C7
51 9004 B00063	0.15	1	5.58		Class I	0	Low	Class C	C8
51 9005 B00079	0.15	5.899	7.13		Class I	0	Low	Class C	C9
51 9004 B00061 C		Culvert							C10
51 9005 B00070 C		Culvert							C10
51 9005 B00071 C		Culvert							C10

Table 4.10 (Cont'): Seismic Embankment Ranking of Bridges in Henderson County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope S	Slope Stability Assessment			ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
53 0094 B00050	0.3	12.9	0.24	>>200	Class III	20.4	High	Class A	A1
53 9003 B00068	0.3	27.39	0.3	>>200	Class III	0	Low	Class A	A2
53 1529 B00056	0.3	13	0.52	8	Class II	0	Low	Class B	B1

Table 4.11: Seismic Embankment Ranking of Bridges in Hickman County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9004 B00015	0.09	37	0.35	>>45.0	Class III	0	Low	Class A	A1
54 9001 B00137	0.09	18.3	0.45	>>45.0	Class III	0	Low	Class A	A2
54 9001 B00137 P									A2
54 9001 B00143	0.09	34.3	0.47	>>45.0	Class III	0	Low	Class A	A3
54 9001 B00143 P									A3
54 9001 B00144	0.09	41	0.47	>>45.0	Class III	0	Low	Class A	A4
54 9001 B00144 P									A4
54 9001 B00136	0.09	19.69	0.54	>>45.0	Class III	0	Low	Class A	A5
54 9001 B00136 P									A5
54 9004 B00095	0.09	32	0.56	>>45.0	Class III	0	Low	Class A	A6
54 9004 B00095 P									A6
54 9001 B00145	0.09	32.41	0.57	>>45.0	Class III	0	Low	Class A	A7
54 9001 B00145 P									A7
54 9004 B00014	0.09	11.39	0.7	>>45.0	Class III	0	Low	Class A	A8
54 9004 B00014 P									A8
54 9001 B00140	0.09	31.29	0.77	>>45.0	Class III	0	Low	Class A	A9
54 9001 B00140 P									A9
54 9001 B00146	0.09	14.2	0.81	24.6	Class III	0	Low	Class A	A10

Table 4.12: Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic	Seismic
BIN ^{1, 2, 3}	PGA*	(ft)	FS^{6}	$u^7 (cm)$	Class ⁸	LPI ⁹	Class ¹⁰	Embankment Category ¹¹	Embankment Ranking ¹²
54 9001 B00146 P									A10
54 9004 B00211	0.09	10.2	0.96	0.3	Class II	0	Low	Class B	B1
54 9004 B00019	0.09	13.89	1		Class I	0	Low	Class C	C1
54 9004 B00096	0.09	33.7	1.01		Class I	0	Low	Class C	C2
54 9004 B00096 P									C2
54 9004 B00012	0.09	27.19	1.02		Class I	0	Low	Class C	C3
54 9004 B00012 P									C3
54 9004 B00021	0.09	21.9	1.02		Class I	0	Low	Class C	C4
54 9004 B00021 P									C4
54 9004 B00018	0.09	26.39	1.07		Class I	0	Low	Class C	C5
54 9004 B00101	0.09	40.29	1.07		Class I	0	Low	Class C	C6
54 9004 B00101 P									C6
54 9004 B00099	0.09	30.72	1.13		Class I	0	Low	Class C	C7
54 9004 B00099 P						-			C7
54 9001 B00138	0.09	14.17	1.15		Class I	0	Low	Class C	C8
54 9001 B00138 P	0.03	17.17	1.10		010001	0	LOW	01035 0	C8
						_			
54 9004 B00011	0.09	13.92	1.17		Class I	0	Low	Class C	C9
54 0454 B00117	0.09	31.39	1.2		Class I	0	Low	Class C	C10

Table 4.12 (Cont'): Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	1011	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9001 B00139	0.09	35.9	1.25		Class I	0	Low	Class C	C11
54 9001 B00139 P									C11
54 0062 B00048	0.09	28.5	1.31		Class I	0	Low	Class C	C12
54 9004 B00020	0.09	10.4	1.39		Class I	0	Low	Class C	C13
54 9004 B00020 P									C13
54 9004 B00097	0.09	19.39	1.42		Class I	0	Low	Class C	C14
54 9004 B00097 P									C14
54 9004 B00100	0.09	19	1.74		Class I	0	Low	Class C	C15
54 9004 B00100 P									C15
54 0813 B00131	0.09	13.4	1.83		Class I	0	Low	Class C	C16
54 0109 B00070	0.09	13.28	1.86		Class I	0	Low	Class C	C17
54 9004 B00016	0.09	15	2.03		Class I	0	Low	Class C	C18
54 9004 B00106	0.09	10.09	2.43		Class I	0	Low	Class C	C19
54 9004 B00106 P									C19
54 9004 B00013	0.09	9	4.65		Class I	0	Low	Class C	C20
54 9004 B00098	0.09	4	9.06		Class I	0	Low	Class C	C21
54 9004 B00098 P									C21
54 9001 B00141 C	0.09	Culvert			Culvert				C22

Table 4.12 (Cont'): Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

Table 4.12 (Cont'): Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 50-year event earthquakes

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope Stability Assessment				ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9004 B00010 C	0.09	Culvert			Culvert				C22
54 9004 B00017 C	0.09	Culvert			Culvert				C22
54 9004 B00104 C	0.09	Culvert			Culvert				C22
54 9004 B00105 C		Culvert							C22

¹Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope Stability Assessment				ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
72 9001 B00030	0.09	35.29	1.34		Class I	0	Low	Class C	C1
72 9001 B00030 P									C1
72 9001 B00029	0.09	22.54	2.1		Class I	0	Low	Class C	C2
72 0093 B00050	0.09	14.59	2.61		Class I	0	Low	Class C	C3
72 9001 B00052	0.09	10	4.73		Class I	0	Low	Class C	C4
72 9001 B00052 P									C4
72 9001 B00049	0.09	6.299	7.14		Class I	0	Low	Class C	C5
72 9001 B00049 P									C5
72 9001 B00051 C		Culvert			Culvert				C6

Table 4.13: Seismic Embankment Ranking of Bridges in Lyon County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
79 0795 B00012	0.15	26.19	0.17	>>85	Class III	0	Low	Class A	A1
79 9003 B00064	0.15	13.39	0.23	>>85	Class III	0	Low	Class A	A2
79 9003 B00064 P									A2
79 9003 B00074	0.15	33.138	0.3	>>85	Class III	0	Low	Class A	A3
79 9003 B00074 P									A3
79 0408 B00103	0.15	11.27	0.31	>>85	Class III	0	Low	Class A	A4
79 1422 B00050	0.15	27.39	0.33	>>85	Class III	0	Low	Class A	A5
79 9003 B00066	0.15	28.6	0.37	>>85	Class III	0	Low	Class A	A6
79 9003 B00076	0.15	12.59	0.44	>>85	Class III	3.65	Low	Class A	A7
79 9003 B00076 P									A7
79 0348 B00102	0.15	24	0.51	>>85	Class III	0	Low	Class A	A8
79 9003 B00068	0.15	21.7	0.66	16.9	Class III	0	Low	Class A	A9
79 9003 B00073	0.15	10.64	0.69	4	Class II	0	Low	Class B	B1
79 641 B00126	0.15	23	0.77	2	Class II	0	Low	Class B	B2
79 0068 B00001	0.15	12.5	0.81	1.2	Class II	0	Low	Class B	B3
79 0068 B00001 P									B3
79 9003 B00075	0.15	11.88	0.89	0.6	Class II	0	Low	Class B	B4
79 9003 B00075 P									B4

Table 4.14: Seismic Embankment Ranking of Bridges in Marshall County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

2 The letter P indicates parallel bridges.

3 The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

4 Peak ground acceleration (PGA) is defined in Street et. al. (1996) for the state of Kentucky.

5 Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

The calculation of factor of safety (FS) of a slope is presented in Chapter 2. 6

7 The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

9 The calculation of liquefaction potential index (LPI) is presented in Chapter 3.

10

No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) 11

The category of embankment behavior is defined in Table 4.1. 12

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope S	Slope Stability Assessment			ion Potential luation	Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
79 0024 B00114	0.15	31	0.91	1.3	Class II	0	Low	Class B	В5
79 0024 B00114 P									B5
79 9003 B00071	0.15	15.1	1.96		Class I	0	Low	Class C	C1
79 9003 B00065 C		Culvert							C2
79 9003 B00067 C		Culvert							C2
79 9003 B00069 C		Culvert							C2
79 9003 B00070 C		Culvert							C2
79 9003 B00072 C		Culvert							C2

Table 4.14 (Cont'): Seismic Embankment Ranking of Bridges in Marshall County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	tion Potential Iuation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
89 9001 B00096	0.09	37	0.34	>>45.0	Class III	0	Low	Class A	A1
89 9001 B00096 P									A1
89 9001 B00094	0.09	35	0.37	>>45.0	Class III	0	Low	Class A	A2
89 9001 B00094 P									A2
89 9001 B00093	0.09	54	0.41	>>45.0	Class III	0	Low	Class A	A3
89 9001 B00093 P									A3
89 9001 B00109	0.09	26	0.42	>>45.0	Class III	0	Low	Class A	A4
89 9001 B00109 P									A4
89 9001 B00090	0.09	16.79	1		Class I	0	Low	Class C	C1
89 9001 B00090 P									C1
89 9001 B00092	0.09	26.5	1.02		Class I	0	Low	Class C	C2
89 9001 B00092 P									C2
89 2692 B00085	0.09	21.79	1.07		Class I	0	Low	Class C	C3
89 9001 B00089	0.09	30.8	1.21		Class I	0	Low	Class C	C4
89 9001 B00089 P									C4
89 9001 B00091	0.09	24.89	1.37		Class I	0	Low	Class C	C5
89 9001 B00091 P									C5
89 0431 B00132	0.09	10.09	1.65		Class I	0	Low	Class C	C6

Table 4.15: Seismic Embankment Ranking of Bridges in Muhlenberg County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope Stability Assessment			Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
89 0431 B00132 P									C6
89 2695 B00058	0.09	7.7	4.49		Class I	0	Low	Class C	C7
89 2697 B00131	0.09	3.099	5.21		Class I	0	Low	Class C	C8
89 2694 B00059	0.09	4.9	6.41		Class I	0	Low	Class C	C9
89 9001 B00115 C		Culvert							C10
89 9001 B00130	0.09		0				Lack of Plans		N/A
89 9001 B00905	0.09		0				Lack of Plans		N/A

Table 4.15 (Cont'): Seismic Embankment Ranking of Bridges in Muhlenberg County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	tion Potential luation	Seismic Embankment	Seismic Embankment
	_	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
92 9007 B00063	0.09	18.39	0.28	>>45.0	Class III	0	Low	Class A	A1
92 9007 B00063 P									A1
92 9007 B00075	0.09	32.2	0.32	>>45.0	Class III	0	Low	Class A	A2
92 9007 B00075 P									A2
92 9001 B00134	0.09	19.5	0.42	>>45.0	Class III	0	Low	Class A	A3
92 9001 B00134 P									A3
92 9001 B00133	0.09	27	0.62	>>45.0	Class III	0	Low	Class A	A4
92 9001 B00133 P									A4
92 9007 B00069	0.09	26.8	0.95	1	Class II	0	Low	Class B	B1
92 1245 B00112	0.09	27.2	1.03		Class I	0	Low	Class C	C1
92 9007 B00076	0.09	14.19	1.04		Class I	0	Low	Class C	C2
92 9007 B00076 P									C2
92 0505 B00093	0.09	28.39	1.06		Class I	0	Low	Class C	C3
92 9007 B00060	0.09	28	1.09		Class I	0	Low	Class C	C4
92 9007 B00060 P									C4
92 9007 B00062	0.09	37	1.23		Class I	0	Low	Class C	C5
92 9007 B00071	0.09	30	1.29		Class I	0	Low	Class C	C6
92 9007 B00061	0.09	36	1.31		Class I		Low	Class C	C7

Table 4.16: Seismic Embankment Ranking of Bridges in Ohio County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) ⁹ The selection of line for the state of the selection of the se

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3. ¹⁰ No = Non liquefable (ES > 1.0 and LPI = 0.0): Low (LPI < 5): Moderate (5 < 1.0)

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) ¹¹ The extreme of ambaultment behavior is defined in Table 4.1

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	tion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
92 2712 B00136	0.09	24.1	1.53		Class I	0	Low	Class C	C8
92 9007 B00072	0.09	25	1.89		Class I	0	Low	Class C	C9
92 9007 B00072 P									C9
92 9001 B00130	0.09	21	2.25		Class I	0	Low	Class C	C10
92 9001 B00130 P									C10
92 1245 B00108	0.09	7	2.63		Class I	0	Low	Class C	C11
92 9007 B00065	0.09	11.09	2.96		Class I	0	Low	Class C	C12
92 9007 B00074	0.09	10	4.23		Class I	0	Low	Class C	C13
92 9007 B00067	0.09	4	4.3		Class I	0	Low	Class C	C14
92 9007 B00067 P									C14
92 9007 B00070	0.09	3	5.83		Class I	0	Low	Class C	C15
92 9001 B00132	0.09	4.5	9.07		Class I	0	Low	Class C	C16
92 9001 B00132 P									C16
92 9007 B00064	0.09	2.599	10		Class I	0	Low	Class C	C17
92 9001 B00131 C		Culvert							C18
92 9007 B00066 C	0.09	Culvert			Culvert				C18
92 9007 B00068 C	0.09	Culvert			Culvert				C18
92 9007 B00073 C	0.09	Culvert			Culvert				C18

Table 4.16 (Cont'): Seismic Embankment Ranking of Bridges in Ohio County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
114 0884 B00050	0.09	21.5	0.83	8.1	Class II	0	Low	Class B	B1
114 9007 B00057	0.09	23.23	1.06		Class I	0	Low	Class C	C1
114 9007 B00049	0.09	18.79	1.07		Class I	0	Low	Class C	C2
114 9007 B00049 P									C2
114 0231 B00055	0.09	30.366	1.12		Class I	0	Low	Class C	C3
114 9007 B00052	0.09	30.4	1.18		Class I	0	Low	Class C	C4
114 9007 B00052 P									C4
114 9007 B00054	0.09	15.88	1.22		Class I	0	Low	Class C	C5
114 9007 B00054 P									C5
114 9007 B00051	0.09	29.59	1.39		Class I	0	Low	Class C	C6
114 9007 B00051 P									C6
114 9007 B00053	0.09	25.34	1.39		Class I	0	Low	Class C	C7
114 9007 B00053 P									C7
114 9007 B00059	0.09	4.163	1.63		Class I	0	Low	Class C	C8
114 0626 B00056	0.09	5.213	2.88		Class I	0	Low	Class C	C9
114 9007 B00060	0.09	8.134	2.9		Class I	0	Low	Class C	C10
114 9007 B00058	0.09	8.758	3.61		Class I	0	Low	Class C	C11

Table 4.17: Seismic Embankment Ranking of Bridges in Warren County on/over Western Kentucky Parkways for 50-year event earthquakes

2 The letter P indicates parallel bridges. 3

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

Peak ground acceleration (PGA) is defined in Street et. al. (1996) for the state of Kentucky. 4

Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present. Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

9 The calculation of liquefaction potential index (LPI) is presented in Chapter 3.

10 No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

11 The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope S	tability As	sessment	Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
117 9004 B00074	0.09	37.75	0.79	14.3	Class III	0	Low	Class A	A1
117 9004 B00074 P		Parallel Bridge	0.79						A1
117 9004 B00073	0.09	21	0.96	0.7	Class II	0	Low	Class B	B1
117 9004 B00068	0.09	26.36	1.01		Class I	0	Low	Class C	C1
117 9004 B00072	0.09	20.6	1.14		Class I	0	Low	Class C	C2
117 9004 B00072 P		Parallel Bridge	1.14						C2
117 9004 B00071	0.09	34.159	1.38		Class I	0	Low	Class C	C3
117 9004 B00071 P		Parallel Bridge	1.38						C3
117 9004 B00069	0.09	24.6	1.45		Class I	0	Low	Class C	C4
117 9004 B00069 P		Parallel Bridge	1.45						C4
117 9004 B00070	0.09	13.59	2.14		Class I	0	Low	Class C	C5

Table 4.18: Seismic Embankment Ranking of Bridges in Webster County on/over Western Kentucky Parkways for 50-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

2 The letter P indicates parallel bridges.

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures. Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky. 3

4

5 Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

6 The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. 8

Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) 9

The calculation of liquefaction potential index (LPI) is presented in Chapter 3. 10

No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

11 The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
16 9007 B00061	0.09	45.79	0.14	>>340	Class III	0	Low	Class A	A1
16 9007 B00057	0.09	22.6	1.23		Class I	0	Low	Class C	C1
16 9007 B00057 P									C1
16 9007 B00062	0.09	20	1.27		Class I	0	Low	Class C	C2
16 9007 B00059	0.09	24.7	1.3		Class I	0	Low	Class C	C3
16 9007 B00059 P									C3
16 9007 B00060	0.09	26.19	1.32		Class I	0	Low	Class C	C4
16 9007 B00060 P									C4
16 9007 B00063	0.09	7	2.02		Class I	0	Low	Class C	C5
16 9001 B00034	0.09	23.29	2.03		Class I	0	Low	Class C	C6
16 0231 B00054	0.09	22	2.15		Class I	0	Low	Class C	C7
16 0403 B00053	0.09	17.5	2.7		Class I	0	Low	Class C	C8
16 9007 B00055 C	0.09	Culvert			Culvert				C9
16 9007 B00056 C	0.09	Culvert			Culvert				C9
16 9007 B00058 C	0.09	Culvert			Culvert				C9

Table 4.19: Seismic Embankment Ranking of Bridges in Butler County on/over Western Kentucky Parkways for 250-year event earthquakes

¹ Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As			ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
17 9001 B00033	0.09	22	0.62	>>340	Class III	0	Low	Class A	A1
17 9001 B00033 P									A1
17 9001 B00029	0.09	33.59	1.02		Class I	0	Low	Class C	C1
17 9001 B00029 P									C1
17 0293 B00007	0.09	15	1.51		Class I	0	Low	Class C	C2
17 0091 B00037	0.09	13.12	1.96		Class I	0	Low	Class C	C3
17 2619 B00048	0.09	12.67	2.66		Class I	0	Low	Class C	C4
17 2613 B00061	0.09	4	5.06		Class I	0	Low	Class C	C5
17 9001 B00060	0.09	6	5.35		Class I	0	Low	Class C	C6
17 9001 B00028 C		Culvert							C7
17 9001 B00030 C		Culvert							C7
17 9001 B00031 C		Culvert							C7
17 9001 B00032 C		Culvert							C7

Table 4.20: Seismic Embankment Ranking of Bridges in Caldwell County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1. A bridge with a ranking of A1 is more suggestible to demage the

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	tion Potential luation	Seismic Embankment	Seismic Embankment
	_	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
24 9004 B00099	0.09	25.29	0.77	>>340	Class III	0	Low	Class A	A1
24 9004 B00098	0.09	22.79	1.09		Class I	0	Low	Class C	C1
24 9004 B00102	0.09	32.89	1.09		Class I	0	Low	Class C	C2
24 9004 B00102 P									C2
24 9004 B00096	0.09	20	1.16		Class I	0	Low	Class C	C3
24 9004 B00095	0.09	24.6	1.43		Class I	0	Low	Class C	C4
24 9004 B00117	0.09	10	1.57		Class I	0	Low	Class C	C5
24 9004 B00105	0.09	12.79	1.64		Class I	0	Low	Class C	C6
24 9004 B00105 P									C6
24 9004 B00118	0.09	16.6	1.92		Class I	0	Low	Class C	C7
24 9004 B00118 P									C7
24 9004 B00093	0.09	20.2	2.03		Class I	0	Low	Class C	C8
24 9004 B00093 P									C8
24 9004 B00104	0.09	20.59	2.11		Class I	0	Low	Class C	C9
24 9004 B00104 P									C9
24 9004 B00101	0.09	21	2.25		Class I	0	Low	Class C	C10
24 9004 B00100	0.09	9	3.02		Class I	0	Low	Class C	C11
24 9004 B00097	0.09	14.7	3.22		Class I	0	Low	Class C	C12

Table 4.21: Seismic Embankment Ranking of Bridges in Christian County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

generative exceed three times the upper displacement limit for the peak ground acceleration present. ⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope Stability Assessment		Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment	
_		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
24 9004 B00094	0.09	10	3.84		Class I	0	Low	Class C	C13
24 9004 B00116	0.09	2	10		Class I	0	Low	Class C	C14
24 9004 B00092 C	0.09	Culvert			Culvert				C15
24 9004 B00103 C	0.09	Culvert			Culvert				C15
24 9004 B00106 C	0.09	Culvert			Culvert				C15

Table 4.21 (Cont'): Seismic Embankment Ranking of Bridges in Christian County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (*u*) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3. ¹⁰ No = Non-liquefactor (S > 10 and LPI = 0.0): Law (*LPI* = 5): Moderate (S < 10)

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass			ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
30 9005 B00058	0.15	25.79	0.12	>>660	Class III	21.15	High	Class A	A1
30 9005 B00058 P									A1
30 9005 B00059	0.15	20	0.18	>>660	Class III	30.8	High	Class A	A2
30 9005 B00059 P									A2
30 9005 B00060	0.15	27.95	0.24	>>660	Class III	13.43	Moderate	Class A	A3
30 9007 B00081	0.15	12.29	0.29	>>660	Class III	7.76	Moderate	Class A	A4
30 9007 B00081 P									A4
30 9007 B00082	0.15	14.29	0.41	>>660	Class III	10.43	Moderate	Class A	A5
30 9007 B00082 P									A5
30 9007 B00089	0.15	12	0.3	>>660	Class III	2.81	Low	Class A	A6
30 9007 B00089 P									A6
30 9005 B00063	0.15	24.03	0.31	>>660	Class III	0	Low	Class A	A7
30 9007 B00085	0.15	28.7	0.32	>>660	Class III	2.55	Low	Class A	A8
30 9007 B00085 P									A8
30 9005 B00061	0.15	31.09	0.34	>>660	Class III	0	Low	Class A	A9
30 9007 B00083	0.15	25.5	0.49	>>660	Class III	0	Low	Class A	A10
30 9007 B00094	0.15	12.69	0.58	70.3	Class III	0.08	Low	Class A	A11
30 9007 B00094 P									A11

Table 4.22: Seismic Embankment Ranking of Bridges in Daviess County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

generative exceed three times the upper displacement limit for the peak ground acceleration present. ⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass	<u> </u>	Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
30 9007 B00088	0.15	11.69	0.69	59.2	Class III	0	Low	Class A	A12
30 9007 B00088 P									A12
30 9007 B00092	0.15	25.69	0.87	12.1	Class III	0	Low	Class A	A13
30 9007 B00090	0.15	12	0.86	8.5	Class II	0	Low	Class B	B1
30 9007 B00090 P									B1
30 9007 B00093	0.15	20.5	1.24		Class I	0	Low	Class C	C1
30 9007 B00091	0.15	10	3.8		Class I	0	Low	Class C	C2
30 9007 B00084	0.15	3.7	5.01		Class I	0	Low	Class C	C3
30 9007 B00086	0.15	4.299	8.4		Class I	0	Low	Class C	C4
30 9005 B00062 C		Culvert			Culvert				C5
30 9007 B00087 C		Culvert							C5

Table 4.22 (Cont'): Seismic Embankment Ranking of Bridges in Daviess County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

2 The letter P indicates parallel bridges.

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures. Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky. 3

4

5 Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

6 The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. 8

Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) 9

The calculation of liquefaction potential index (LPI) is presented in Chapter 3. 10

No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

11 The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	BIN ^{1, 2, 3} PGA ⁴	Height ⁵	Slope Stability Assessment				ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	$u^7 (\mathrm{cm})$	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
38 9003 B00055	0.4	29.69	0.17	>>2250	Class III	26.8	High	Class A	A1
38 9003 B00055 P									A1
38 0307 B00015	0.4	27	0.18	>>2250	Class III	41.88	High	Class A	A2
38 9003 B00053	0.4	14.5	0.21	>>2250	Class III	37.03	High	Class A	A3
38 9003 B00053 P									A3
38 0051 B00012	0.4	21.3	0.24	>>2250	Class III	21.9	High	Class A	A4
38 9003 B00054	0.4	20	0.29	>>2250	Class III	14.44	Moderate	Class A	A5
38 9003 B00054 P									A5
38 9003 B00056 C		Culvert							C1

Table 4.23: Seismic Embankment Ranking of Bridges in Fulton County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet. 2

The letter P indicates parallel bridges.

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

4 Peak ground acceleration (PGA) is defined in Street et. al. (1996) for the state of Kentucky. 5

Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

6 The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

9 The calculation of liquefaction potential index (LPI) is presented in Chapter 3.

10 No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) 11

The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass			ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
42 9003 B00177	0.19	8.799	0.2	>>890	Class III	25.91	High	Class A	A1
42 9003 B00177 P									A1
42 9003 B00176	0.19	11.5	0.22	>>890	Class III	33.91	High	Class A	A2
42 9003 B00176 P									A2
42 9003 B00170	0.19	14	0.39	>>890	Class III	12.73	Moderate	Class A	A3
42 9003 B00170 P									A3
42 1748 B00128	0.19	20.69	0.42	N/A	Class III	7.9	Moderate	Class A	A4
42 0058 B00096	0.19	24.79	0.1	>>890	Class III	1.67	Low	Class A	A5
42 9003 B00154	0.19	26.39	0.1	>>890	Class III	0	Low	Class A	A6
42 9003 B00154 P									A6
42 9003 B00175	0.19	18.08	0.16	>>890	Class III	0	Low	Class A	A7
42 9003 B00162	0.19	11.89	0.19	>>890	Class III	4.93	Low	Class A	A8
42 9003 B00162 P									A8
42 9003 B00155	0.19	21.69	0.24	>>890	Class III	0	Low	Class A	A9
42 9003 B00155 P									A9
42 9003 B00169	0.19	28.2	0.26	>>890	Class III	3.76	Low	Class A	A10
42 9003 B00172	0.19	18.6	0.26	>>890	Class III	0	Low	Class A	A11
42 9003 B00160	0.19	11.6	0.3	>>890	Class III	3.63	Low	Class A	A12

Table 4.24: Seismic Embankment Ranking of Bridges in Graves County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) ⁹ The selevation of lines of the set of the set

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) ¹¹ The extreme of ambaultment behavior is defined in Table 4.1

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	_	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
42 9003 B00156	0.19	33.1	0.31	>>890	Class III	0	Low	Class A	A13
42 9003 B00156 P									A13
42 9003 B00165	0.19	7.799	0.35	>>890	Class III	0	Low	Class A	A14
42 9003 B00165 P									A14
42 0944 B00180	0.19	24.4	0.4	N/A	Class III	0	Low	Class A	A15
42 9003 B00167	0.19	9.3	0.43	>>890	Class III	0	Low	Class A	A16
42 9003 B00167 P									A16
42 0121 B00111	0.19	21.79	0.52	>>890	Class III	0	Low	Class A	A17
42 0301 B00028	0.19	20	0.52	>>890	Class III	0	Low	Class A	A18
42 9003 B00161	0.19	13.7	0.55	281.1	Class III	0	Low	Class A	A19
42 9003 B00166	0.19	4.5	0.58	87.5	Class III	0	Low	Class A	A20
42 9003 B00166 P									A20
42 0339 B00143	0.19	23.6	0.72	38.6	Class III	0	Low	Class A	A21
42 9003 B00159	0.19	9.5	0.82	16.4	Class III	0	Low	Class A	A22
42 9003 B00159 P									A22
42 9003 B00157	0.19	10.3	0.84	13.8	Class III	0	Low	Class A	A23
42 9003 B00157 P									A23
42 9003 B00173	0.19	2.26	8.21		Class I	5.21	Moderate	Class B	B1

Table 4.24 (Cont'): Seismic Embankment Ranking of Bridges in Graves County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass	<u> </u>	Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	-	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
42 9003 B00173 P									B1
42 0080 B00106	0.19	18.5	0.92	8.7	Class II	0	Low	Class B	B2
42 9003 B00163	0.19	10.19	1.02		Class I	-14.7	Low	Class C	C1
42 9003 B00163 P									C1
42 9003 B00164	0.19	12.2	1.05		Class I	0	Low	Class C	C2
42 0131 B00009	0.19	17.5	1.14		Class I	0	Low	Class C	C3
42 9003 B00158	0.19	10.7	1.27		Class I	0	Low	Class C	C4
42 9003 B00158 P									C4
42 9003 B00153	0.19	21.2	1.8		Class I	0	Low	Class C	C5
42 9003 B00168	0.19	14	2.08		Class I	2.43	Low	Class C	C6
42 9003 B00168 P									C6
42 9003 B00171	0.19	0.5	10		Class I	0.61	Low	Class C	C7
42 9003 B00174 C	0.19	Culvert			Culvert				C8

Table 4.24 (Cont'): Seismic Embankment Ranking of Bridges in Graves County on/over Western Kentucky Parkways for 250-year event earthquakes

¹Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1. A bridge with a ranking of A1 is more suggestible to demage the

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	_	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
43 0224 B00003	0.09	16.3	1.66		Class I	0	Low	Class C	C1
43 9001 B00069	0.09	17.66	1.69		Class I	0	Low	Class C	C2
43 0259 B00009	0.09	15	1.73		Class I	0	Low	Class C	C3
43 0185 B00019	0.09	26.2	1.81		Class I	0	Low	Class C	C4
43 0079 B00023	0.09	16.69	1.91		Class I	0	Low	Class C	C5
43 9001 B00070	0.09	20.69	1.98		Class I	0	Low	Class C	C6
43 9001 B00027	0.09	23.29	2.03		Class I	0	Low	Class C	C7
43 9001 B00027 P									C7
43 9001 B00060	0.09	16.35	2.11		Class I	0	Low	Class C	C8
43 9001 B00078	0.09	10.5	3		Class I	0	Low	Class C	C9
43 0088 B00006	0.09	10.79	3.14		Class I	0	Low	Class C	C10
43 9001 B00073	0.09	10.2	3.46		Class I	0	Low	Class C	C11
43 9001 B00026	0.09	9.5	3.47		Class I	0	Low	Class C	C12
43 9001 B00026 P									C12
43 9001 B00082	0.09	4	6.08		Class I	0	Low	Class C	C13
43 9001 B00076	0.09	1	8.16		Class I	0	Low	Class C	C14
43 9001 B00028 C		Culvert							C15
43 9001 B00029 C		Culvert							C15

Table 4.25: Seismic Embankment Ranking of Bridges in Grayson County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

Table 4.25 (Cont'): Seismic Embankment Ranking of Bridges in Grayson County on/over Western Kentucky Parkways for 250-year event earthquakes

BIN ^{1, 2, 3} PGA ⁴		Height ⁵	Slope Stability Assessment				ion Potential luation	Seismic Embankment	Seismic Embankment
_		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
43 9001 B00030 C		Culvert							C15
43 9001 B00031 C		Culvert							C15
43 9001 B00032 C		Culvert			Culvert				C15

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	tion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
47 31W B00108	0.09	45.1	0.72	>>340	Class III	0	Low	Class A	A1
47 9001 B00093	0.09	32.5	1.09		Class I	0	Low	Class C	C1
47 9001 B00093 P									C1
47 31W B00153	0.09	27.09	1.13		Class I	0	Low	Class C	C2
47 9001 B00092	0.09	31.5	1.17		Class I	0	Low	Class C	C3
47 9001 B00092 P									C3
47 9001 B00127	0.09	34.09	1.26		Class I	0	Low	Class C	C4
47 9001 B00127 P		Parallel Bridge	1.26						C4
47 9001 B00085	0.09	23.45	1.69		Class I	0	Low	Class C	C5
47 1136 B00053	0.09	17.99	1.84		Class I	0	Low	Class C	C6
47 9001 B00094	0.09	13.1	2.28		Class I	0	Low	Class C	C7
47 9001 B00094 P									C7
47 9001 B00045	0.09	19.2	2.29		Class I	0	Low	Class C	C8
47 9001 B00090	0.09	16	2.34		Class I	0	Low	Class C	C9
47 0084 B00043	0.09	16.76	2.4		Class I	0	Low	Class C	C10
47 9001 B00056	0.09	10	3.91		Class I	0	Low	Class C	C11
47 9001 B00095 C		Culvert							C12

Table 4.26: Seismic Embankment Ranking of Bridges in Hardin County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	1011	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
51 0425 B00137	0.15	18	0.77	14.7	Class III	0	Low	Class A	A1
51 0425 B00137 P									A1
51 9005 B00072	0.15	54.1	0.14	>>660	Class III	0.13	Low	Class A	A2
51 9004 B00069	0.15	28.6	0.39	>>660	Class III	0	Low	Class A	A3
51 9004 B00062	0.4	26	0.51	>>2250	Class III	0	Low	Class A	A4
51 9004 B00062 P									A4
51 9004 B00111	0.15	27.3	0.6	>>660	Class III	0	Low	Class A	A5
51 9004 B00065	0.15	18	0.61	>>660	Class III	0	Low	Class A	A6
51 9004 B00064	0.15	15	0.76	32.8	Class III	0	Low	Class A	A7
51 9004 B00073	0.15	27	0.8	10.7	Class III	0	Low	Class A	A8
51 9004 B00073 P									A8
51 9005 B00074	0.15	26.1	0.81	>>660	Class III	0	Low	Class A	A9
51 9005 B00075	0.15	20.89	0.82	31.5	Class III	0	Low	Class A	A10
51 9005 B00073	0.15	25.5	0.92	10.7	Class II	0	Low	Class B	B1
51 9005 B00073 P									B1
51 9005 B00077	0.15	8.4	0.96	2.4	Class II	0	Low	Class B	B2
51 9005 B00077 P									B2
51 9004 B00112	0.15	19.5	1.08		Class I	0	Low	Class C	C1

Table 4.27: Seismic Embankment Ranking of Bridges in Henderson County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	<u> </u>	Stability Ass	<u>v</u>	Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	-	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
51 9005 B00076	0.15	21.1	1.09		Class I	0	Low	Class C	C2
51 9004 B00066	0.15	25	1.31		Class I	0	Low	Class C	1
51 9004 B00067	0.15	19.69	1.45		Class I	0	Low	Class C	C3
51 9005 B00080	0.15	27.89	1.51		Class I	0	Low	Class C	C4
51 9005 B00078	0.15	24	1.75		Class I	0	Low	Class C	C5
51 9004 B00068	0.15	6.5	2.36		Class I	0	Low	Class C	C6
51 9004 B00068 P									C6
51 9004 B00063	0.4	1	5.58		Class I	0	Low	Class C	C7
51 9005 B00079	0.15	5.899	7.13		Class I	0	Low	Class C	C8
51 9004 B00061 C		Culvert							C9
51 9005 B00070 C		Culvert							C9
51 9005 B00071 C		Culvert							C9

Table 4.27 (Cont'): Seismic Embankment Ranking of Bridges in Henderson County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope S	Slope Stability Assessment			tion Potential	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
53 0094 B00050	0.4	12.9	0.24	>>2250	Class III	35.65	High	Class A	A1
53 9003 B00068	0.4	27.39	0.3	>>2250	Class III	10.7	Moderate	Class A	A2
53 1529 B00056	0.4	13	0.52	93.7	Class III	5.94	Moderate	Class A	A3

Table 4.28: Seismic Embankment Ranking of Bridges in Hickman County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	10/1	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9004 B00015	0.09	37	0.35	>>340	Class III	0	Low	Class A	A1
54 9001 B00137	0.09	18.3	0.45	>>340	Class III	0	Low	Class A	A2
54 9001 B00137 P									A2
54 9001 B00143	0.09	34.3	0.47	>>340	Class III	0	Low	Class A	A3
54 9001 B00143 P									A3
54 9001 B00144	0.09	41	0.47	>>340	Class III	0	Low	Class A	A4
54 9001 B00144 P									A4
54 9001 B00136	0.09	19.69	0.54	>>340	Class III	0	Low	Class A	A5
54 9001 B00136 P									A5
54 9004 B00095	0.09	32	0.56	>>340	Class III	0	Low	Class A	A6
54 9004 B00095 P									A6
54 9001 B00145	0.09	32.41	0.57	>>340	Class III	0	Low	Class A	A7
54 9001 B00145 P									A7
54 9004 B00014	0.09	11.39	0.7	>>340	Class III	0	Low	Class A	A8
54 9004 B00014 P									A8
54 9001 B00140	0.09	31.29	0.77	>>340	Class III	0	Low	Class A	A9
54 9001 B00140 P									A9
54 9001 B00146	0.09	14.2	0.81	183.5	Class III	0	Low	Class A	A10

Table 4.29: Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky. ⁵ Endpaired by the state of Kentucky.

Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope S	tability As	sessment		ion Potential luation	Seismic Embankment	Seismic Embankment
	1011	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9001 B00146 P									A10
54 9004 B00211	0.09	10.2	0.96	2.6	Class II	0	Low	Class B	B1
54 9004 B00019	0.09	13.89	1		Class I	0	Low	Class C	C1
54 9004 B00096	0.09	33.7	1.01		Class I	0	Low	Class C	C2
54 9004 B00096 P									C2
54 9004 B00012	0.09	27.19	1.02		Class I	0	Low	Class C	C3
54 9004 B00012 P									C3
54 9004 B00021	0.09	21.9	1.02		Class I	0	Low	Class C	C4
54 9004 B00021 P									C4
54 9004 B00018	0.09	26.39	1.07		Class I	0	Low	Class C	C5
54 9004 B00101	0.09	40.29	1.07		Class I	0	Low	Class C	C6
54 9004 B00101 P									C6
54 9004 B00099	0.09	30.72	1.13		Class I	0	Low	Class C	C7
54 9004 B00099 P									C7
54 9001 B00138	0.09	14.17	1.15		Class I	0	Low	Class C	C8
54 9001 B00138 P									C8
54 9004 B00011	0.09	13.92	1.17		Class I	0	Low	Class C	C9
54 0454 B00117	0.09	31.39	1.2		Class I	0	Low	Class C	C10

Table 4.29 (Cont'): Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. ⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9001 B00139	0.09	35.9	1.25		Class I	0	Low	Class C	C11
54 9001 B00139 P									C11
54 0062 B00048	0.09	28.5	1.31		Class I	0	Low	Class C	C12
54 9004 B00020	0.09	10.4	1.39		Class I	0	Low	Class C	C13
54 9004 B00020 P									C13
54 9004 B00097	0.09	19.39	1.42		Class I	0	Low	Class C	C14
54 9004 B00097 P									C14
54 9004 B00100	0.09	19	1.74		Class I	0	Low	Class C	C15
54 9004 B00100 P									C15
54 0813 B00131	0.09	13.4	1.83		Class I	0	Low	Class C	C16
54 0109 B00070	0.09	13.28	1.86		Class I	0	Low	Class C	C17
54 9004 B00016	0.09	15	2.03		Class I	0	Low	Class C	C18
54 9004 B00106	0.09	10.09	2.43		Class I	0	Low	Class C	C19
54 9004 B00106 P									C19
54 9004 B00013	0.09	9	4.65		Class I	0	Low	Class C	C20
54 9004 B00098	0.09	4	9.06		Class I	0	Low	Class C	C21
54 9004 B00098 P									C21
54 9001 B00141 C	0.09	Culvert			Culvert				C22

Table 4.29 (Cont'): Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

Table 4.29 (Cont'): Seismic Embankment Ranking of Bridges in Hopkins County on/over Western Kentucky Parkways for 250-year event earthquakes

BIN ^{1, 2, 3}	PGA^4 Height ⁵		Slope Stability Assessment				ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
54 9004 B00010 C	0.09	Culvert			Culvert				C22
54 9004 B00017 C	0.09	Culvert			Culvert				C22
54 9004 B00104 C		Culvert							C22
54 9004 B00105 C		Culvert							C22

¹Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵	Slope S	tability As	sessment		ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
72 9001 B00030	0.15	35.29	1.19		Class I	0	Low	Class C	C1
72 9001 B00030 P									C1
72 9001 B00029	0.15	22.54	1.86		Class I	0	Low	Class C	C2
72 0093 B00050	0.15	14.59	2.61		Class I	0	Low	Class C	C2
72 9001 B00052	0.15	10	4.21		Class I	0	Low	Class C	C3
72 9001 B00052 P									C3
72 9001 B00049	0.15	6.299	6.68		Class I	0	Low	Class C	C4
72 9001 B00049 P									C4
72 9001 B00051 C		Culvert			Culvert				C5

Table 4.30: Seismic Embankment Ranking of Bridges in Lyon County on/over Western Kentucky Parkways for 250-year event earthquakes

¹Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
79 9003 B00076	0.15	12.59	0.44	>>660	Class III	8.34	Moderate	Class A	A1
79 9003 B00076 P									A1
79 0795 B00012	0.15	26.19	0.17	>>660	Class III	0	Low	Class A	A2
79 9003 B00064	0.15	13.39	0.23	>>660	Class III	0	Low	Class A	A3
79 9003 B00064 P									A3
79 9003 B00074	0.15	33.138	0.3	>>660	Class III	0	Low	Class A	A4
79 9003 B00074 P									A4
79 0408 B00103	0.15	11.27	0.31	>>660	Class III	0	Low	Class A	A5
79 1422 B00050	0.15	27.39	0.33	>>660	Class III	0	Low	Class A	A6
79 9003 B00066	0.15	28.6	0.37	>>660	Class III	0	Low	Class A	A7
79 0348 B00102	0.15	24	0.51	>>660	Class III	0	Low	Class A	A9
79 9003 B00068	0.15	21.7	0.66	125.5	Class III	0	Low	Class A	A10
79 9003 B00073	0.15	10.64	0.69	29.2	Class III	0	Low	Class A	A10
79 641 B00126	0.15	23	0.77	14.7	Class III	0	Low	Class A	A11
79 0068 B00001	0.15	12.5	0.81	8.9	Class II	0	Low	Class B	B1
79 0068 B00001 P									B1
79 9003 B00075	0.15	11.88	0.89	4.6	Class II	0	Low	Class B	B2
79 9003 B00075 P									B2

Table 4.31: Seismic Embankment Ranking of Bridges in Marshall County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present. ⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵ (ft)	Slope S	Slope Stability Assessment			ion Potential luation	Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
79 0024 B00114	0.15	31	0.91	9.4	Class II	0	Low	Class B	B3
79 0024 B00114 P									B3
79 9003 B00071	0.15	15.1	1.96		Class I	0	Low	Class C	C1
79 9003 B00065 C		Culvert							C2
79 9003 B00067 C		Culvert							C2
79 9003 B00069 C		Culvert							C2
79 9003 B00070 C		Culvert							C2
79 9003 B00072 C		Culvert							C2

Table 4.31 (Cont'): Seismic Embankment Ranking of Bridges in Marshall County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (*FS* > 1.0 and *LPI* = 0.0); Low (*LPI* < 5); Moderate ($5 \le LPI < 15$); and High (*LPI* ≥ 15)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability Ass		Liquefact	ion Potential luation	Seismic Embankment	Seismic Embankment
	-	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
89 9001 B00096	0.09	37	0.34	>>340	Class III	0	Low	Class A	A1
89 9001 B00096 P									A1
89 9001 B00094	0.09	35	0.37	>>340	Class III	0	Low	Class A	A2
89 9001 B00094 P									A2
89 9001 B00093	0.09	54	0.41	>>340	Class III	0	Low	Class A	A3
89 9001 B00093 P									A3
89 9001 B00109	0.09	26	0.42	>>340	Class III	0	Low	Class A	A4
89 9001 B00109 P									A4
89 9001 B00090	0.09	16.79	1		Class I	0	Low	Class C	C1
89 9001 B00090 P									C1
89 9001 B00092	0.09	26.5	1.02		Class I	0	Low	Class C	C2
89 9001 B00092 P									C2
89 2692 B00085	0.09	21.79	1.07		Class I	0	Low	Class C	C3
89 9001 B00089	0.09	30.8	1.21		Class I	0	Low	Class C	C4
89 9001 B00089 P									C4
89 9001 B00091	0.09	24.89	1.37		Class I	0	Low	Class C	C5
89 9001 B00091 P									C5
89 0431 B00132	0.09	10.09	1.65		Class I	0	Low	Class C	C6

Table 4.32: Seismic Embankment Ranking of Bridges in Muhlenberg County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	PGA ⁴ Height ⁵ (ft)		Slope Stability Assessment			tion Potential luation	Embankment	Seismic Embankment
		(11)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
89 0431 B00132 P									C6
89 2695 B00058	0.09	7.7	4.49		Class I	0	Low	Class C	C7
89 2697 B00131	0.09	3.099	5.21		Class I	0	Low	Class C	C8
89 2694 B00059	0.09	4.9	6.41		Class I	0	Low	Class C	C9
89 9001 B00115 C		Culvert							C10
89 9001 B00130	0.09				Lack of Plans				N/A
89 9001 B00905	0.09				Lack of Plans				N/A

Table 4.32 (Cont'): Seismic Embankment Ranking of Bridges in Muhlenberg County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		Slope Stability Assessment Liquefaction Potential Evaluation				Seismic Embankment	Seismic Embankment
	_	(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
92 9007 B00063	0.09	18.39	0.28	>>340	Class III	0	Low	Class A	A1
92 9007 B00063 P									A1
92 9007 B00075	0.09	32.2	0.32	>>340	Class III	0	Low	Class A	A2
92 9007 B00075 P									A2
92 9001 B00134	0.09	19.5	0.42	>>340	Class III	0	Low	Class A	A3
92 9001 B00134 P									A3
92 9001 B00133	0.09	27	0.62	>>340	Class III	0	Low	Class A	A4
92 9001 B00133 P									A4
92 9007 B00069	0.09	26.8	0.95	7.1	Class II	0	Low	Class B	B1
92 1245 B00112	0.09	27.2	1.03		Class I	0	Low	Class C	C1
92 9007 B00076	0.09	14.19	1.04		Class I	0	Low	Class C	C2
92 9007 B00076 P									C2
92 0505 B00093	0.09	28.39	1.06		Class I	0	Low	Class C	C3
92 9007 B00060	0.09	28	1.09		Class I	0	Low	Class C	C4
92 9007 B00060 P									C4
92 9007 B00062	0.09	37	1.23		Class I	0	Low	Class C	C5
92 9007 B00071	0.09	30	1.29		Class I	0	Low	Class C	C6
92 9007 B00061	0.09	36	1.31		Class I		Low	Class C	C7

Table 4.33: Seismic Embankment Ranking of Bridges in Ohio County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>'

generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) ⁹ The selection of line for the state of the selection of the se

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3. ¹⁰ No = Non liquefactor (FS > 1.0 and LPI = 0.0): Low (*LPI < 5*): Moderate (5 < 1.0 m)

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) ¹¹ The extreme of ambaultment behavior is defined in Table 4.1

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		Slope Stability Assessment Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment		
		(ft)	FS^{6}	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
92 2712 B00136	0.09	24.1	1.53		Class I	0	Low	Class C	C8
92 9007 B00072	0.09	25	1.89		Class I	0	Low	Class C	C9
92 9007 B00072 P									C9
92 9001 B00130	0.09	21	2.25		Class I	0	Low	Class C	C10
92 9001 B00130 P									C10
92 1245 B00108	0.09	7	2.63		Class I	0	Low	Class C	C11
92 9007 B00065	0.09	11.09	2.96		Class I	0	Low	Class C	C12
92 9007 B00074	0.09	10	4.23		Class I	0	Low	Class C	C13
92 9007 B00067	0.09	4	4.3		Class I	0	Low	Class C	C14
92 9007 B00067 P									C14
92 9007 B00070	0.09	3	5.83		Class I	0	Low	Class C	C15
92 9001 B00132	0.09	4.5	9.07		Class I	0	Low	Class C	C16
92 9001 B00132 P									C16
92 9007 B00064	0.09	2.599	10		Class I	0	Low	Class C	C17
92 9001 B00131 C		Culvert							C18
92 9007 B00066 C	0.09	Culvert			Culvert				C18
92 9007 B00068 C	0.09	Culvert			Culvert				C18
92 9007 B00073 C	0.09	Culvert			Culvert				C18

Table 4.33 (Cont'): Seismic Embankment Ranking of Bridges in Ohio County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

² The letter P indicates parallel bridges.

³ The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

⁴ Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky.

⁵ Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

⁶ The calculation of factor of safety (*FS*) of a slope is presented in Chapter 2.

⁷ The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

⁸ Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

⁹ The calculation of liquefaction potential index (*LPI*) is presented in Chapter 3.

¹⁰ No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

¹¹ The category of embankment behavior is defined in Table 4.1.

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		Slope Stability Assessment Liquefaction Potential Evaluation		Stope Stability Assessment Evaluation Eml		Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
114 0884 B00050	0.09	21.5	0.83	61.3	Class III	0	Low	Class A	A1
114 9007 B00057	0.09	23.23	1.06		Class I	0	Low	Class C	C1
114 9007 B00049	0.09	18.79	1.07		Class I	0	Low	Class C	C2
114 9007 B00049 P									C2
114 0231 B00055	0.09	30.366	1.12		Class I	0	Low	Class C	C3
114 9007 B00052	0.09	30.4	1.18		Class I	0	Low	Class C	C4
114 9007 B00052 P									C4
114 9007 B00054	0.09	15.88	1.22		Class I	0	Low	Class C	C5
114 9007 B00054 P									C5
114 9007 B00051	0.09	29.59	1.39		Class I	0	Low	Class C	C6
114 9007 B00051 P									C6
114 9007 B00053	0.09	25.34	1.39		Class I	0	Low	Class C	C7
114 9007 B00053 P									C7
114 9007 B00059	0.09	4.163	1.63		Class I	0	Low	Class C	C8
114 0626 B00056	0.09	5.213	2.88		Class I	0	Low	Class C	C9
114 9007 B00060	0.09	8.134	2.9		Class I	0	Low	Class C	C10
114 9007 B00058	0.09	8.758	3.61		Class I	0	Low	Class C	C11

Table 4.34: Seismic Embankment Ranking of Bridges in Warren County on/over Western Kentucky Parkways for 250-year event earthquakes

The letter P indicates parallel bridges. 3 The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures.

Peak ground acceleration (PGA) is defined in Street et. al. (1996) for the state of Kentucky. 4

Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present. Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm)

9 The calculation of liquefaction potential index (LPI) is presented in Chapter 3.

10 No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$)

11 The category of embankment behavior is defined in Table 4.1.

2

BIN ^{1, 2, 3}	PGA ⁴	Height ⁵		tability As		Liquefaction Potential Evaluation		Seismic Embankment	Seismic Embankment
		(ft)	FS^6	u^7 (cm)	Class ⁸	LPI ⁹	Class ¹⁰	Category ¹¹	Ranking ¹²
117 9004 B00074	0.09	37.75	0.79	105.6	Class III	0	Low	Class A	A1
117 9004 B00074 P									A1
117 9004 B00073	0.09	21	0.96	5.4	Class II	0	Low	Class B	B1
117 9004 B00068	0.09	26.36	1.01		Class I	0	Low	Class C	C1
117 9004 B00072	0.09	20.6	1.14		Class I	0	Low	Class C	C2
117 9004 B00072 P									C2
117 9004 B00071	0.09	34.159	1.38		Class I	0	Low	Class C	C3
117 9004 B00071 P									C3
117 9004 B00069	0.09	24.6	1.45		Class I	0	Low	Class C	C4
117 9004 B00069 P									C4
117 9004 B00070	0.09	13.59	2.14		Class I	0	Low	Class C	C5

Table 4.35: Seismic Embankment Ranking of Bridges in Webster County on/over Western Kentucky Parkways for 250-year event earthquakes

Bridge identification number (BIN) as defined in the bridge inventory of the Kentucky Transportation Cabinet.

2 The letter P indicates parallel bridges.

The letter C indicates culverts. No further evaluation was necessary or performed on this type of structures. Peak ground acceleration (PGA) is defined in Street *et. al.* (1996) for the state of Kentucky. 3

4

5 Embankment height is defined as the difference between the top embankment elevation and the ground elevation.

6 The calculation of factor of safety (FS) of a slope is presented in Chapter 2.

The displacement calculation is presented in Chapter 2. Displacement (u) is calculated when FS < 1.0. Displacements preceded by '>>' generally exceed three times the upper displacement limit for the peak ground acceleration present.

8

Class I = Stable; Class II = Critical (FS < 1.0 and u < 10 cm); and Class III = Unstable (FS < 1.0 and u > 10 cm) 9

The calculation of liquefaction potential index (LPI) is presented in Chapter 3. 10

No = Non-liquefiable (FS > 1.0 and LPI = 0.0); Low (LPI < 5); Moderate ($5 \le LPI < 15$); and High ($LPI \ge 15$) 11

The category of embankment behavior is defined in Table 4.1.

5 SUMMARY AND CONCLUSION

Procedures to evaluate the slope stability (Chapter 2) and liquefaction potential (Chapter 3) of a given bridge embankment were presented in this study. The procedures were subsequently used to form the basis of seismic bridge embankment ranking (Chapter 4). The resulting ranking classifications are as presented in Table 4.1 with bridge embankments in category A representing the ones that are the most susceptible to seismic hazard, and bridge embankments in category B is for bridge embankments that are in moderate risk.

To automate the computation and ranking process, the procedures and definitions of bridge embankment classifications were coded in Microsoft Access 2003, in a program named Seismic Assessment System for Bridges (SASB).

There are a total of 389 bridges [107 parallel bridges (107 x 2 = 214 bridges), 40 culvert bridges, and 135 independent bridges] along the parkways in western Kentucky. In this process, 240 sets of calculations were performed, which included only the independent and parallel bridges (e.g. only one set of calculation was required per each parallel bridge). The 40 culvert bridges were excluded in the evaluation. It should be noted that calculations for two of the parallel bridges located in Muhlenberg County were also not performed due to the lack of bridge plans and site data. Since the two bridges are located in a region with a seismic performance category (SPC) of B [i.e. sites having acceleration coefficient of less than 0.19g in accordance with the *Seismic Retrofitting Manual for Highway Bridges* (Buckle and Friedland 1995)], therefore, seismic risk for these bridges were presumably not as high.

The ranking of bridge embankments in the county they reside was evaluated accordingly. The results are summarized in Tables 4.2-4.35, respectively. A breakdown of bridge embankments in accordance with their category is summarized in Tables 5.1 and 5.2. Comparing the 50- and 250-year event earthquakes, almost the same number and percentage of bridges remain in category C. An increase of 6% of bridges in category A was noted when 250-year event earthquakes, compared to 50-year event earthquakes, were considered. It is recommended that a more detailed and sophisticated analysis be performed on bridge embankments rated as category A, 30% and 36% for 50- and 250-year event earthquakes, respectively.

	For 50-year event earthquakes*	
Category	Number of bridges	Percentage (%)
А	73	30
В	25	10
С	142	60
	Total	100
	For 250-year event earthquakes*	
Category	Number of bridges	Percentage (%)
А	88	36
В	11	5
С	141	59
		100

Table 5.1: Overall embankment ranking of parkway bridges in western Kentucky

* For the state of Kentucky, these earthquake events are defined in *Source Zone, Recurrence Rates, and Time Histories for Earthquakes affecting Kentucky* (Street et. al. 1996)

			For 5	50-year e	vent ear	thquakes ¹				
County ²	SPC ³	\mathbf{PGA}^1 -	En	nbankme	ent categ	ory ⁴	Perce	ntage bi	reakdowi	n (%) ⁴
County	SPC	PGA -	Α	В	С	Total ⁵	Α	B	С	Total
Fulton	D	0.30g	5	0	0	5	100	0	0	100
Hickman	D	0.30g	2	1	0	3	67	33	0	100
Graves	С	0.15g	19	5	8	32	59	16	25	100
Marshall	С	0.15g	9	5	1	15	60	33	7	100
Henderson	С	0.15g	5	6	9	20	25	30	45	100
Daviess	С	0.15g	10	4	4	18	56	22	22	100
Lyon	В	0.09g	0	0	5	5	0	0	100	100
Caldwell	В	0.09g	1	0	6	7	14	0	86	100
Muhlenberg ⁶	В	0.09g	4	0	9	13	31	0	69	100
Grayson	В	0.09g	0	0	14	14	0	0	100	100
Hardin	В	0.09g	1	0	11	12	8	0	92	100
Christian	В	0.09g	1	0	14	15	7	0	93	100
Hopkins	В	0.09g	10	1	21	32	31	3	66	100
Webster	В	0.09g	1	1	5	7	14	14	71	100
Warren	В	0.09g	0	1	11	12	0	8	92	100
Butler	В	0.09g	1	0	8	9	11	0	89	100
Ohio	В	0.09g	4	1	16	21	19	5	76	100
	S	ummary	73	25	142	240				
		2	For 2	50-year o	event ear	thquakes ¹				
C	SPC ³	\mathbf{PGA}^1 -	Embankment category ⁴			Percentage breakdown (%)				
County ²	SPC	PGA -	Α	В	C	Total ⁵	Α	B	С	Total
Fulton	D	0.30g	5	0	0	5	100	0	0	100
Hickman	D	0.30g	3	0	0	3	100	0	0	100
Graves	С	0.15g	23	2	7	32	72	6	22	100
Marshall	С	0.15g	11	3	1	15	73	20	7	100
Henderson	С	0.15g	9	2	9	20	45	10	45	100
Daviess	С	0.15g	13	1	4	18	72	6	22	100
Lyon	С	0.15g	0	0	5	5	0	0	100	100
Caldwell	В	0.09g	1	0	6	7	14	0	86	100
Muhlenberg ⁶	В	0.09g	4	0	9	13	31	0	69	100
Grayson	В	0.09g	0	0	14	14	0	0	100	100
Hardin	В	0.09g	1	0	11	12	8	0	92	100
Christian	В	0.09g	1	0	14	15	7	0	93	100
Hopkins	В	0.09g	10	1	21	32	31	3	66	100
Webster	В	0.09g	1	1	5	7	14	14	71	100
Warren	В	0.09g	1	0	11	12	8	0	92	100
Dutlan	D	0.005	1	õ	0		11	õ	20	100

Table 5.2: Ranking of embankments in the individual counties for 50- and 250-year event earthquakes

Based on Source Zone, Recurrence Rates, and Time Histories for Earthquakes affecting Kentucky (Street et. al. 1996)

Only counties with bridges along the parkways were listed and evaluated

Defined in Seismic Retrofitting Manual for Highway Bridges (Buckle and Friedland 1995)

Embankment categories A, B, or C are as defined in Table 4.1, Page 23

0.09g

0.09g

Summary

В

В

Butler

Ohio

Summation of number of bridges evaluated in categories A, B, and C

Two (2) parallel bridges in this county were not evaluated due to the lack of plans

REFERENCES

- Ambraseys, N.N. and Menu, J.M. (1988). "Earthquake induced ground displacements," *Earthquake Engineering and Structural Dynamics*, Vol. 16, pp 985-1006.
- Buckle, I. G., and Friedland, I. M. (1995). *Seismic retrofitting manual for highway bridges*. Report No. FHWA-RD-94-052, Federal Highway Administration, 309 pp.
- Dodds A.M. (1997), *Seismic Deformation Analysis for Kentucky Highway Embankments*, Thesis completed in partial fulfillment of the requirements for a Master of Science Degree in Civil Engineering, University of Kentucky.
- Hynes, M.E., and Olsen, R.S. (1999). "Influence of Confining Stress on Liquefaction Resistance," *Proc., Int.* Workshop on Phys. And Mech. of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, pp 145-152.
- Iwasaki, T., Arakawa, T., and Tokida, K. (1982a). "Simplified procedures for assessing soil liquefaction during earthquakes". Proceedings of the Conference on Soil Dynamics and Earthquake Engineering, Southampton, UK, pp 925-939.
- Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S., and Sato, H. (1982b). "Microzonation for Soil Liquefaction Potential Using Simplified Methods," *Third International Earthquake Microzonation Conference Proceedings: June 28-July 1, 1982, Seattle, USA*, 3, pp 1319-1330.
- Kayen, R. E., and Mitchell, J. K. (1997). "Assessment of liquefaction potential during earthquakes by Arias intensity." J. Geotech and Geoenvir. Engrg., ASCE, 123(12), pp 1162–1174.
- Marcuson, W. F., III (1978). "Definition of terms related to liquefaction." J. Geotech. Engrg. Div., ASCE, 104(9), pp 1197–1200.
- National Research Council [NRC] (1985). "Liquefaction of Soils During Earthquakes." National Academy Press, Washington, D.C.
- Newmark, N. M. (1965), "Effects of Earthquakes on Dams and Embankments", Geotechnique, Vol.15, No.2, pp139-160.
- Seed, H. B., and Idriss, I. M. (1971). "Simplified procedure for evaluating soil liquefaction potential." *J. Geotech. Engrg. Div.*, ASCE, 97(9), pp 1249–1273.
- Seed, H. B. (1979). "Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes." *J. Geotech. Engrg. Div.*, ASCE, 105(2), pp 201–255.
- Seed, H. B., and Idriss, I. M. (1982). "Ground motions and soil liquefaction during earthquakes" Earthquake Engineering Research Institute Monograph, Oakland, Calif.
- Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). "The influence of SPT procedures in soil liquefaction resistance evaluations." J. Geotech. Engrg., ASCE, 111(12), pp 1425–1445.
- Street, R., Wang, Z., Harik, I., Allen, D., and Griffin, J. (1996), Source Zones, Recurrence Rates, and Time Histories for Earthquakes Affecting Kentucky, Report No. KTC-96-4, Kentucky Transportation Center, March, 187 pp.

- Sutterer, K.G., Harik, I.E., Allen, D.L., and Street, R. (2000), "Ranking and Assessment of Seismic Stability of Highway Embankments in Kentucky", Research Report KTC-00-1, Kentucky Transportation Center, 87 pp.
- Youd, T. L., and Perkins, D. M. (1978). "Mapping of liquefaction induced ground failure potential." J. Geotech. Engrg. Div., ASCE, 104(4), pp 433–446.
- Youd, T. L. et al. (2001). "Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils." J. of Geotech. and Geoenvir. Engrg., 127(10), pp 817-833.

APPENDIX A

Seismic Assessment System for Bridges (SASB)

APPENDIX A

This section briefly describes the working of the Seismic Assessment System for Bridges (SASB). SASB is intended for preliminary seismic assessment of bridge embankment. In general, the seismic evaluation of a given bridge embankment is based upon two factors: (1) slope stability and (2) liquefaction potential, as described in Chapters 2 and 3, respectively. This program, which was written in Microsoft Access 2003, allows user to evaluate new bridge embankment or to evaluate existing bridges along the five western Kentucky parkways. A database containing general bridges' information of the five western Kentucky parkways has been created.

The followings are the step-by-step instructions of SASB:

Step 1: Double-click on SASB_KTC_05 to activate the program. A welcome page as depicted in Fig. A1 is shown. Click on Continue to proceed.

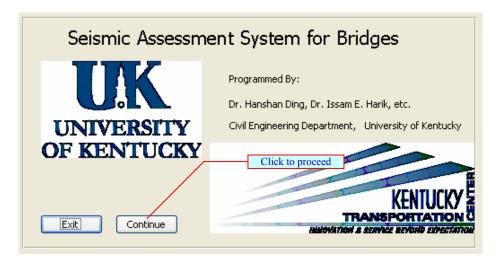
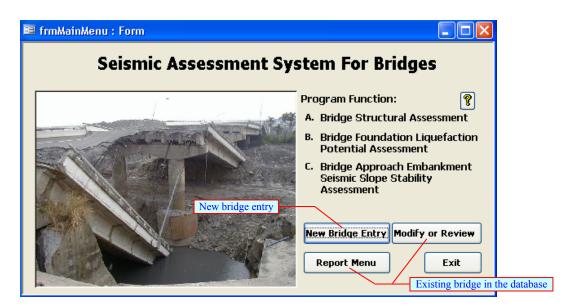



Fig. A1. Welcome page of the Seismic Assessment System for Bridges (SASB) program.

- **Step 2:** Users are subsequently presented with two basic options (Fig. A2): (a) input new bridge data for seismic embankment evaluation, or (b) review or modify existing bridge in the database.
 - **Step 2.a:** Two additional options are presented to obtain the seismic evaluation results of an existing bridge along the five western Kentucky parkways (Figs. A3 and A4). There are 384 bridges along the five western Kentucky parkways, and they are all included in the database. To locate a specific bridge, users have the option of selecting the desired bridge's identification number (BIN). The users also have the option of sorting and narrowing down the bridge selection by specifying a county or a parkway.

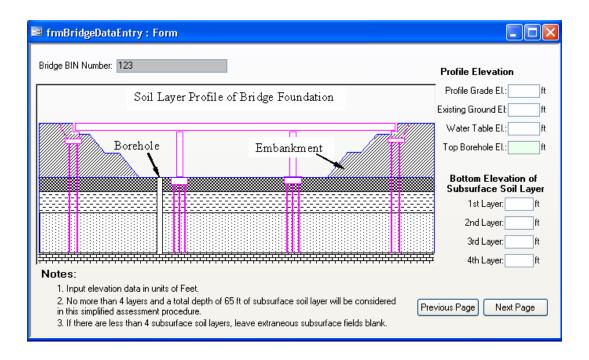
Fig. A2. Bridge information page.

	🖻 frmBridgeSelect : Form
Sp	Selection by BIN Bridge Bin Number:
Sp	Route:
	County: Confirm
	Notes: You may select an individual bridge from the "Bridge Bin Number" pull down
	list. Also, for additional convenience, you may limit the number of bridges from the "Bridge Bin Number" list by selecting a "Route" and "County" from the respective pull down lists.

Fig. A3. Selecting a bridge in the existing database.

- **NOTE:** Fig. A3 presents bridge data or result in a manner that follows the evaluation processes or steps described in Chapter 2 (slope stability) and Chapter 3 (liquefaction potential). Fig. A4 provides the users a direct summary results based on the default values of a bridge in the database (i.e. in general, information of the bridges along the parkways is obtained directly from the bridge plans). The main difference between the two is that Fig. A3 gives users the flexibility to alter the default values of certain parameters (i.e. height, slope, soil profile, etc); accounting for possible changes in site physical condition. In light of such possibility, values based on the updated information may be used in lieu of the default values.
 - Step 2.b: SASB allows users to define new bridge for seismic evaluation as shown in Fig. A5. Users will subsequently be prompted by the program to input the bridge's embankment details or properties (Figs. A6, A7, A8, and A9).

frmReportGeneration	
Bridge Selection	Content Selection
💿 Single Bridge	Structural Assessment Results
O Bridges on Specific Route	Embankment Assessment Results
O Bridges in Specific District	Liquefaction Assessment Results
All of the Bridges in the DataBase	
	Preview the Report Print the Report
Route Selection District Selection	Switch to Main Menu Notes:
Specific Bridge Selection	 Please make a selection before pressing "Preview the Report" or "Print the Report".


Fig. A4. Seismic evaluation based on default values of a given bridge in the database.

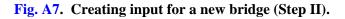

OK
Cancel

Fig. A5. Generating a new bridge entry.

🖻 frmBridgeDataEntry : Form	
Bridge BIN Number: 123	
Bridge Drawing No: County: Roadway carried by bridge: Year Built: Structure Type:	Sesmic Parameters for 50 Year Events Peak Ground Acceleration Coefficient :g % Body Wave Magnitude: Moment Magnitude: Seismic Performance Category:
Road Width: ft Parallel Bridge? No Net Distance Between Two Parallel Bridges: 0 ft	Seismic Parameters for 250 Year Events
Bridge Location:	Peak Ground Acceleration Coefficient: g % Body Wave Magnitude:
Notes: 1. The Data in the gray control box is locked, i.e. it cannot be edited. Data in the green boxes are only recommended data, and may be changed by the user. 2. Enter Seismic Peak Ground Acceleration Coefficient as percent of gravit; 3. The seismic parameters were adopted from county-wide data. Hence, if seismic parameters will be generated. However, the user may change thes	a county is specified then default Next Page

Fig. A6. Creating input for a new bridge (Step I).

ݝ frmBridgeDataEntry : Form	
Bridge BIN Number: 123	Embankment Profile
TT	Embankment Height (h): 1 ft
	Embankment Slope Inclination (b): 2
	Top Surface Width: ft
	Soil Type of Embankment Fill: Sandy Clay 💌
Emb ankment Fill Natural Foundation Soil	Soil Density of Embankment Fill: 120 lb/ft^3
	Undrained Shear Strength of Embankment Fill: 1024 lb/ft^2
Notes:	
 The Data in the green control boxes are only recorn by the user. Data in the gray box is locked, i.e. it can 2. The Recommaned Embankment Height is determin bridge and the existing Natural Ground Line(NGL). For below the NGL), please modify the recommended val directly into the box of "Embankment Height (h)". 	not be edited. ed by both the Profile Grade of the rout slope (Embankment base line is Province Base) Mout Base

Fig. A8. Creating input for a new bridge (Step III).

Bridge Pin Number: 123 Soil Layer Profile
Soil_Layer_ID: 1 (1 of 2) Top Surface: 2 ft Mid Level: 61 ft
Soil Type for This Layer: Soil Type for This
Consistency or Compactness: Recommended Value for this Soil Layer
Soil Color: Soil Moisture: Soil Density Ib/ft^3
SPT Blow Counts Undrained Shear Strength Ib/ft^2
Determined by: Default 🔽 Original or Entry:
Need to Correct ? Yes 🗸 Corrected or Estimated:
SPT Equipment Varibles and Their Corrections SPT Correction SPT Correction Coefficient
Rod Length Correction Cr= 1 Change? No ❤ Factors for Soil Fine Contents Total Pressure: Ib/ft^2
Borehole Diameter: 65-115mm 👽 Cb= 1 Alpha: Effective Pressure: Ib/ft^2
Deput Hampen D. Co. 0.75
Deta.
Standard Sampler V Cs= 1

Fig. A9. Creating input for a new bridge (Step IV).

Step 3: Based on given information [either for an existing bridge (Step 2.a) or a new bridge (Step 2.b), SASB will perform slope stability analyses (see Chapter 2) and liquefaction analysis (see Chapter 3). The outcomes of these processes are depicted in Fig. A10 and Fig. A11, respectively.

-8	frmEmbankment.	Assessment							
					Bridg	e BIN Number:	114 0231 BC	10055	
	Embankment A	ssessmen	nt Result	ts:					
		50 Y	r'ear Eivents	5		250 Year Ever	nts		
	Predicted Failure Mode	Factor of Safety Acc	Yield celeration [Predicted Displacement	Factor of Safety	Yield Acceleration I	Predicted Displacement		
	Wedge Failure:	3.38	0.529 g%		3.38	0.529 g%			
	Slope Failure:	1.56	0.259 g%		1.56	0.259 g%	r		
	Base Failure:	1.12	0.109 g%		1.12	0.109 g%		Slope stabilit	y assessment
	Case with Lowest Factor:	1.12	0.109 g%	0.0 cm	1.12	0.109 g%	0.0 cm		
	Ranking Results:		Class C]		Class C			
	Notes: 1. For a factor of 2. Sites with a sei: seismic assessmer considered stable;	smic displacements it; the sites wit	ent greater th a factor :	than 10 cm ar of safety great	e categoriz ter than 1 -	ed as Class A,	ok; and if Fs<1 and require a	detailed	

Fig. A10. Slope stability assessment.

😑 frmliquefactionAssessment				×	
	Bridge BIN Number: 114 0231 B00055				
Modern sand blow	Factor of Safety again	inst Liquefactio	n		
		50 Year Events:	250 Year Events:		
Silt and clay layers	1st Layer:	1.0000	1.0000		
,	2nd Layer:	1.0000	1.0000		
Filled fissure (sand dike)	3rd Layer:				
	4th Layer:				Liquefaction assessment
Liquefied sand	Liquefaction Index:	0.0000	0.0000		
Earthquake Waves (after Stris and Garvin, 1996)	Liquefaction Potential:	Low Risk	Low Risk		
Notes: 1. For soil layers with a Factor of Safety a liquefaction is severe. For soil layers with					
For bridge sites containing a Liquefaction liquefaction is severe. For bridge sites with					

Fig. A11. Liquefaction assessment.

Step 4: Finally, users of SASB have the option of viewing or printing the report of a specific bridge as seen in Fig. A12, by clicking **Report Menu**. A sample report of a specific bridge is presented in Fig. A13.

🖴 frmMainMenu : Form	
Seismic Assessment Sy	stem For Bridges
	Program Function: Image: Comparison of the system of t
	Existing bridge in the database

Fig. A12. Obtaining output of a seismic evaluation.

Assessment Results j	for Specifi	ic Bridge
Bridge Bin Number: 1140231 B00055	Structure Typ	e: Concrete Bridge
County: Warren	Year Built:	1970
Route: Natcher Parkway	Location:	OVER GREEN RV PW NTRCH
Seismic Parameters:		
Seismic Mi	agnitude for 50 year	event 6.4
Seismic Peak Ground Acce	ileraáon for 50 year	event 0.09 % ⁸
Seizric May	nitule for 250 year	event 13
Seismic Peak Ground Accel	eration for 250 year	event 0.09 % 8
Bridge Profile:		
Bridge	e Brofile Grade Elev	ation: 519.57t
E	xisting Ground Elev	ation: 479.17t
	Water Table Elev	ation: 4727t
E	mbank Slope Incân	ation: 1:2
2	ype of Embankmen	<i>t Soil:</i> Sandy Clay
Sail	 Density of Embank	ment 120 lb/tt*S
	Height of Embank	tment 30.4#
Ranking Results :		
Ŧ	or 50 Year Event	For 250 Year Event
Factor of Safety for Slope Stability:	1.12	1.12
Embankment Rank Pe sults	Class C	Class C
Liquefaction Potential Index	0.00	000
Liquefaction Ranking Results	Low Risk	Low Risk

Fig. A13. Sample output of SASB.

NOTE: SASB contains other types of output files. Users are encouraged to exploit the different output options.

For more information or a complete publication list, contact us at:

KENTUCKY TRANSPORTATION CENTER

176 Raymond Building University of Kentucky Lexington, Kentucky 40506-0281

> (859) 257-4513 (859) 257-1815 (FAX) 1-800-432-0719 www.ktc.uky.edu ktc@engr.uky.edu

The University of Kentucky is an Equal Opportunity Organization